Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
08.11.2024

Тема самообразования «Повышение вычислительных навыков на уроках математики, как средство достижения прочных знаний»

фомина Людмила  Александровна
учитель математики и информатики
Данная тема мною выбрана неслучайно, так как формирование у обучающихся вычислительных навыков - это одна из важнейших задач обучения математике, основой которых является осознанное и прочное усвоение приемов устных и письменных вычислений. Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении. Ни один пример, ни одну задачу по математике, физике, химии и т. д. нельзя решать, не обладая элементарными способами вычислений.
Цель: выявление значения устных упражнений как одного из наиболее эффективных средств формирования устных вычислительных навыков обучающихся.
Задачи:
- изучить психолого-педагогические, теоретические и методические источники по данному вопросу;
-разработать систему устных упражнений, способствующих формированию вычислительных навыков;
- провести и проанализировать результаты диагностики.

Содержимое разработки

Тема самообразования

«Повышение вычислительных навыков на уроках математики, как средство достижения прочных знаний»

Данная тема мною выбрана неслучайно, так как формирование у обучающихся вычислительных навыков - это одна из важнейших задач обучения математике, основой которых является осознанное и прочное усвоение приемов устных и письменных вычислений. Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении. Ни один пример, ни одну задачу по математике, физике, химии и т. д. нельзя решать, не обладая элементарными способами вычислений.

Цель: выявление значения устных упражнений как одного из  наиболее эффективных средств формирования устных вычислительных навыков обучающихся.

Задачи:

- изучить психолого-педагогические, теоретические и методические источники по данному вопросу;

-разработать систему устных упражнений, способствующих  формированию вычислительных навыков;

- провести и проанализировать результаты диагностики.

Навык – это действие, сформированное путем повторения, характерное высокой степенью освоения и отсутствием поэлементарной сознательной регуляции и контроля.

Вычислительный навык – это высокая степень овладения вычислительными приемами.

Приобрести вычислительные навыки – значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро.

Вычислительные навыки рассматриваются как один из видов учебных навыков, функционирующих и формирующихся в процессе обучения. Они входят в структуру учебно-познавательной деятельности и существуют в учебных действиях, которые выполняются посредством определенной системы операций. В зависимости от степени овладения обучающимися учебным действием, оно выступает как умение или навык, характеризующийся такими качествами, как правильность, осознанность, рациональность, обобщенность, автоматизм и прочность.

Правильность – обучающийся правильно находит результат арифметического действия над данными числами, т. е. правильно выбирает и выполняет операции, составляющие прием.

Осознанность – обучающийся осознает, на основе каких знаний выбраны операции и установлен порядок их выполнения. Это для него своего рода доказательство правильности выбора системы операции. Осознанность проявляется в том, что обучающийся в любой момент может объяснить, как он решал пример и почему можно так решать. Это, конечно, не значит, что он всегда должен объяснять решение каждого примера. В процессе овладения навыков объяснение должно постепенно свертываться.

Рациональность – обучающийся, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием, т. е. выбирает те из возможных операции, выполнение которых легче других и быстрее приводит к результату арифметического действия. Разумеется, что это качество навыка может проявляться тогда, когда для данного случая существуют различные приемы нахождения результата, и обучающийся, используя различные знания, может сконструировать несколько приемов и выбрать более рациональный. Как видим, рациональность непосредственно связана с осознанностью навыка.

Обобщенность – обучающийся может применить прием вычисления к большему числу случаев, т. е. он способен перенести прием вычисления на новые случаи. Обобщенность так же, как и рациональность, теснейшим образом связана с осознанностью вычислительного навыка, поскольку общим для различных случаев вычисления будет прием, основа которого – одни и те же теоретические положения.

Автоматизм (свернутость) – обучающийся выделяет и выполняет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операции. Осознанность и автоматизм вычислительных навыков не являются противоречивыми качествами. Они всегда выступают в единстве: при свернутом выполнении операции осознанность сохраняется, но обоснование выбора системы операции происходит свернуто в плане внутренней речи. Благодаря этому обучающийся может в любой момент дать развернутое обоснование выбора системы операции.

Прочность – обучающийся сохраняет сформированные вычислительные навыки на длительное время.

Формирование вычислительных навыков, обладающих названными качествами, обеспечивается построением курса математики и использованием соответствующих методических приемов. Вместе с тем, обучающийся при выполнении вычислительного приёма должен отдавать отчёт в правильности и целесообразности каждого выполненного действия, то есть постоянно контролировать себя, соотнося выполняемые операции с образцом – системой операций. О сформированности любого умственного действия можно говорить лишь тогда, когда он сам, без вмешательства со стороны, выполняет все операции приводящие к решению. Умение осознано контролировать выполняемые операции позволяет формировать вычислительные навыки более высокого уровня, чем без наличия этого умения.

Выполнение вычислительного приёма – мыслительный процесс, следовательно, овладение вычислительным приёмом и умение осуществлять  контроль за его выполнением, должно происходить одновременно в процессе обучения.

Способы решения проблем:

1) игры, игровые моменты и занимательные задачи

2) тесты «Проверь себя сам»

3) математические диктанты

4) творческие задания и конкурсы;

5) различные приемы устных вычислений

Формы восприятия устного счета

  • Зрительная

  • Слуховая

  • Комбинированная

Устные упражнения важны тем, что:

  • активируют мыслительную деятельность учащихся;

  • развивают память, речь, внимание, способность воспринимать сказанное на слух, быстроту реакции;

  • повышают эффективность урока

Обучающиеся быстро утомляются при выполнении одного и того же вида деятельности. И здесь на помощь приходят игровые моменты и занимательные задачи, которые позволяют прервать монотонное течение урока, сменить род деятельности, отдохнуть с пользой.

Методы устной работы:

«Исправляем ошибки» или «Найди ошибку»

Беглый счет

«Равный счет».

«Счет-дополнение».

«Эстафета».

Домино

Кроссворды

Игра «Исправляем ошибки». Цель игры: развитие критичности мышления, самоконтроля, внимания, умения обосновывать свою точку зрения.

Перед вами примеры на умножение десятичных дробей. Найдите ошибки. И.т.д.

Но не всегда использование игры полностью целесообразно. Это может быть связано, например, с большим количеством времени, которое требуется на проведение всей игры. В этом случае оправдано использование игровых моментов или занимательных задач, которые имеют непривычную форму или необычны в организации выполнения задания. Игровые моменты несут те же функции, что и игры, но требуют меньше времени на подготовку и проведение. Они являются элементами игры, не требующими обучению правилам. К тому же использование игровых моментов и занимательных задач полностью согласуется со вторым принципом – разнообразия видов деятельности; смена вида деятельности – лучший отдых.

На картине изображена деревенская школа конца XIX века во время урока арифметики при решении дроби в уме.

Учитель — реальный человек, Сергей Александрович Рачинский (1833—1902), ботаник и математик, профессор Московского университета.

На волне народничества в 1872 году Рачинский вернулся в родное село Татево, где создал школу с общежитием для крестьянских детей, разработал уникальную методику обучения устному счёту, прививая деревенским ребятишкам его навыки и основы математического мышления. Эпизоду из жизни школы с творческой атмосферой, царившей на уроках, и посвятил своё произведение Богданов-Бельский, сам в прошлом ученик Рачинского.

На классной доске написан пример, который ученикам необходимо решить:

Вывод:

Систематичная тренировка в устных вычислениях поможет прочным формированиям вычислительных навыков учащихся, что в свою очередь поможет сдаче ОГЭ и ЕГЭ.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/590352-tema-samoobrazovanija-povyshenie-vychisliteln

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки