- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- «Специфика работы с детьми-мигрантами дошкольного возраста»
- «Учебный курс «Вероятность и статистика»: содержание и специфика преподавания в условиях реализации ФГОС ООО и ФГОС СОО»
- «Центр «Точка роста»: создание современного образовательного пространства в общеобразовательной организации»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Программа основного общего образования по математике для обучающихся 5-9 классов
Обсуждена на заседании кафедры математики и информатики Протокол № 1 от « » _____________2015 г. Зав. кафедрой ____________ / С.Н. Герасимова / | Согласована зам. директора по УВР МБНОУ лицея № 22 города Белово _________________ / А.Б. Кускова / | Принята педсоветом МБНОУ лицея № 22 города Белово Протокол № 1 от « » ______________2015 г. Секретарь _______________ / А.Д. Богданова / Утверждаю Директор МБНОУ лицея № 22 города Белово Приказ № _____ от «____» ____________2015 г. ________________/ Е.Н.Белова / |
Программа
основного общего образования
по математике для обучающихся 5 - 9 классов
Составитель – Герасимова Светлана Николаевна учитель математики МБНОУ лицея № 22 города Белово |
2015 - 2016 г.
Содержание
1. | Пояснительная записка | 3 |
2. | Общая характеристика учебного предмета «Математика» | 3 |
3. | Описание места учебного предмета в учебном плане | 5 |
4. | Личностные, метапредметные и предметные результаты освоения предмета «Математика» 5 – 9 классы | 6 |
5. | Содержание учебного предмета «Математика» | 13 |
6. | Тематическое планирование с определением основных видов учебной деятельности обучающихся | 21 |
7. | Описание учебно-методического и материально-технического обеспечения образовательного процесса по предмету «Математика» | 42 |
8. | Планируемые результаты изучения учебного предмета | 43 |
1. Пояснительная записка
Программа основного общего образования по математике составлена на основе требований к результатам освоения основной образовательной программы основного общего образования МБНОУ лицея № 22 города Белово с учетом основных направлений программ, включенных в структуру основной образовательной программы основного общего образования МБНОУ лицея № 22 города Белово.
Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:в направлении личностного развития:
формирование представлений о математике, как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей;
в метапредметном направлении:
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
в предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
2. Общая характеристика учебного предмета «Математика. Алгебра. Геометрия»
В основе содержания обучения математике лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены главные содержательно-целевые направления развития учащихся средствами предмета «Математика.Алгебра.Геометрия».
Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.
Коммуникативная компетенция.Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).
Организационная компетенция. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.
Общекультурная компетенция. Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: уровень развития математики на разных исторических этапах; высокая практическая значимость математики с точки зрения создания и развития материальной культуры человечества, важная роль математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.
Содержание математического образования применительно к основной школе представлено в виде следующих содержательных разделов. Это арифметика; алгебра; функции; вероятность и статистика; геометрия. Наряду с этим в содержание основного общего образования включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения. При этом первая линия – «Логика и множества» – служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая – «Математика в историческом развитии» – способствует созданию общекультурного, гуманитарного фона изучения курса. Содержание раздела«Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования. Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе. Содержание раздела«Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры. Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления. Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах. Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Раздел«Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.
3. Описание места учебного предмета «Математика. Алгебра. Геометрия»
в учебном плане
Учебный предмет «Математика. Алгебра. Геометрия» предметной области «Математика» входит в обязательную часть учебного плана основной образовательной программы основного общего образования МБНОУ лицея № 22 города Белово.
На изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучении, всего 850 уроков. В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика.Алгебра.Геометрия» изучается с 5-го по 9-й класс в виде следующих учебных курсов: 5–6 классы – «Математика» (интегрированный предмет), 7–9 класс - предмет «Алгебра» и «Геометрия».
Предмет «Математика» в 5–6 классах включает в себя арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.
Предмет «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, собственно алгебраический материал, элементарные функции, а также элементы вероятностно-статистической линии. В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.
Распределение учебного времени между этими предметами представлено в таблице.
Классы | Предметы математического цикла | Количество часов на ступени основного образования |
5-6 | Математика | 340 |
7-9 | Алгебра | 306 |
Геометрия | 204 | |
Всего | 850 | |
4. Личностные, метапредметные и предметные результаты освоения учебного
предмета «Математика.Алгебра.Геометрия»5–9 классы
Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Алгебра» и «Геометрия») являются следующие качества: независимость и критичность мышления; воля и настойчивость в достижении цели. Средством достижения этих результатов является: система заданий учебников; представленная в учебниках в явном виде организация материала по принципу минимакса; использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.
Метапредметными результатами изучения курса «Математика.Алгебра.Геометрия» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
5–6-й классы
– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
– выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости)конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
7–9-й классы
– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
– составлять план решения проблемы (выполнения проекта);
– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;
– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
– планировать свою индивидуальную образовательную траекторию;
– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
– в ходе представления проекта давать оценку его результатам;
– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
– уметь оценить степень успешности своей индивидуальной образовательной деятельности;
– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).
Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
5–9-й классы
– анализировать, сравнивать, классифицировать и обобщать факты и явления;
– осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
– создавать математические модели;
– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
– вычитывать все уровни текстовой информации.
– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.
Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития.
Коммуникативные УУД:
5–9-й классы
– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
– в дискуссии уметь выдвинуть контраргументы;
– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты, гипотезы, аксиомы, теории;
– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.
Предметными результатами изучения предмета «Математика» являются следующие умения.
5-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание:
названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);
как образуется каждая следующая счётная единица;
названия и последовательность разрядов в записи числа;
названия и последовательность первых трёх классов;
сколько разрядов содержится в каждом классе;
соотношение между разрядами;
сколько единиц каждого класса содержится в записи числа;
как устроена позиционная десятичная система счисления;
единицы измерения величин (длина, масса, время, площадь), соотношения между ними;
функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).
Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;
выполнять умножение и деление с 1 000;
вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;
раскладывать натуральное число на простые множители;
находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;
решать простые и составные текстовые задачи;
выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;
находить вероятности простейших случайных событий;
решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;
решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;
читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;
строить простейшие линейные, столбчатые и круговые диаграммы;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
6-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
десятичных дробях и правилах действий с ними;
отношениях и пропорциях; основном свойстве пропорции;
прямой и обратной пропорциональных зависимостях и их свойствах;
процентах;
целых и дробных отрицательных числах; рациональных числах;
правиле сравнения рациональных чисел;
правилах выполнения операций над рациональными числами; свойствах операций.
– Сравнивать десятичные дроби;
выполнять операции над десятичными дробями;
преобразовывать десятичную дробь в обыкновенную и наоборот;
округлять целые числа и десятичные дроби;
находить приближённые значения величин с недостатком и избытком;
выполнять приближённые вычисления и оценку числового выражения;
делить число в данном отношении;
находить неизвестный член пропорции;
находить данное количество процентов от числа и число по известному количеству процентов от него;
находить, сколько процентов одно число составляет от другого;
увеличивать и уменьшать число на данное количество процентов;
решать текстовые задачи на отношения, пропорции и проценты;
сравнивать два рациональных числа;
выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;
решать комбинаторные задачи с помощью правила умножения;
находить вероятности простейших случайных событий;
решать простейшие задачи на осевую и центральную симметрию;
решать простейшие задачи на разрезание и составление геометрических фигур;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
7-й класс. Алгебра
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
натуральных, целых, рациональных, иррациональных, действительных числах;
степени с натуральными показателями и их свойствах;
одночленах и правилах действий с ними;
многочленах и правилах действий с ними;
формулах сокращённого умножения;
тождествах; методах доказательства тождеств;
линейных уравнениях с одной неизвестной и методах их решения;
системах двух линейных уравнений с двумя неизвестными и методах их решения.
Выполнять действия с одночленами и многочленами;
узнавать в выражениях формулы сокращённого умножения и применять их;
раскладывать многочлены на множители;
выполнять тождественные преобразования целых алгебраических выражений;
доказывать простейшие тождества;
находить число сочетаний и число размещений;
решать линейные уравнения с одной неизвестной;
решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;
решать текстовые задачи с помощью линейных уравнений и систем;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
7-й класс. Геометрия
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;
определении угла, биссектрисы угла, смежных и вертикальных углов;
свойствах смежных и вертикальных углов;
определении равенства геометрических фигур; признаках равенства треугольников;
геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;
определении параллельных прямых; признаках и свойствах параллельных прямых;
аксиоме параллельности и её краткой истории;
формуле суммы углов треугольника;
определении и свойствах средней линии треугольника;
теореме Фалеса.
Применять свойства смежных и вертикальных углов при решении задач;
находить в конкретных ситуациях равные треугольники и доказывать их равенство;
устанавливать параллельность прямых и применять свойства параллельных прямых;
применять теорему о сумме углов треугольника;
использовать теорему о средней линии треугольника и теорему Фалеса;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
8-й класс. Алгебра
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
алгебраической дроби; основном свойстве дроби;
правилах действий с алгебраическими дробями;
степенях с целыми показателями и их свойствах;
стандартном виде числа;
функциях ,,, их свойствах и графиках;
понятии квадратного корня и арифметического квадратного корня;
свойствах арифметических квадратных корней;
функции , её свойствах и графике;
формуле для корней квадратного уравнения;
теореме Виета для приведённого и общего квадратного уравнения;
основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;
методе решения дробных рациональных уравнений;
основных методах решения систем рациональных уравнений.
Сокращать алгебраические дроби;
выполнять арифметические действия с алгебраическими дробями;
использовать свойства степеней с целыми показателями при решении задач;
записывать числа в стандартном виде;
выполнять тождественные преобразования рациональных выражений;
строить графики функций ,, и использовать их свойства при решении задач;
вычислять арифметические квадратные корни;
применять свойства арифметических квадратных корней при решении задач;
строить график функции и использовать его свойства при решении задач;
решать квадратные уравнения;
применять теорему Виета при решении задач;
решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;
решать дробные уравнения; системы рациональных уравнений;
решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
8-й класс. Геометрия
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;
определении трапеции; элементах трапеции; теореме о средней линии трапеции;
определении окружности, круга и их элементов;
теореме об измерении углов, связанных с окружностью;
определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;
определении вписанной и описанной окружностей, их свойствах;
определении тригонометрические функции острого угла, основных соотношений между ними;
приёмах решения прямоугольных треугольников;
тригонометрических функциях углов от 0 до 180°;
теореме косинусов и теореме синусов;
приёмах решения произвольных треугольников;
формулах для площади треугольника, параллелограмма, трапеции;
теореме Пифагора.
Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач; решать простейшие задачи на трапецию;
находить градусную меру углов, связанных с окружностью; устанавливать их равенство; применять свойства касательных к окружности при решении задач;
решать задачи на вписанную и описанную окружность;
выполнять основные геометрические построения с помощью циркуля и линейки;
находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;
применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;
решать прямоугольные треугольники;
сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;
применять теорему косинусов и теорему синусов при решении задач;
решать произвольные треугольники;
находить площади треугольников, параллелограммов, трапеций;
применять теорему Пифагора при решении задач;
находить простейшие геометрические вероятности;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
9-й класс. Алгебра
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
свойствах числовых неравенств;
методах решения линейных неравенств;
свойствах квадратичной функции;
методах решения квадратных неравенств;
методе интервалов для решения рациональных неравенств;
методах решения систем неравенств;
свойствах и графике функциипри натуральном n;
определении и свойствах корней степениn;
степенях с рациональными показателями и их свойствах;
определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;
определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;
формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.
Использовать свойства числовых неравенств для преобразования неравенств;
доказывать и решать простейшие линейные неравенства;
строить график квадратичной функции и использовать его при решении задач;
решать квадратные неравенства;
решать рациональные неравенства методом интервалов;
решать системы неравенств;
строить график функциипри натуральном n и использовать его при решении задач;
находить корни степени n;
использовать свойства корней степениn при тождественных преобразованиях;
находить значения степеней с рациональными показателями;
решать основные задачи на арифметическую и геометрическую прогрессии;
находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
9-й класс. Геометрия
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
признаках подобия треугольников;
теореме о пропорциональных отрезках;
свойстве биссектрисы треугольника;
пропорциональных отрезках в прямоугольном треугольнике;
пропорциональных отрезках в круге;
теореме об отношении площадей подобных многоугольников;
свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;
определении длины окружности и формуле для её вычисления;
формуле площади правильного многоугольника;
определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;
правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;
определении координат вектора и методах их нахождения;
правиле выполнений операций над векторами в координатной форме;
определении скалярного произведения векторов и формуле для его нахождения;
связи между координатами векторов и координатами точек;
векторным и координатным методах решения геометрических задач.
формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.
Применять признаки подобия треугольников при решении задач;
решать простейшие задачи на пропорциональные отрезки;
решать простейшие задачи на правильные многоугольники;
находить длину окружности, площадь круга и его частей;
выполнять операции над векторами в геометрической и координатной форме;
находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;
решать геометрические задачи векторным и координатным методом;
применять геометрические преобразования плоскости;
находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
5. Содержание учебного предмета «Математика. Алгебра. Геометрия»
Содержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.
Логика и множества.
Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество.
Операции над множествами. Пересечение и объединение множеств. Разность множеств, дополнение множества. Интерпретация операций над множествами с помощью кругов Эйлера.
Элементы логики. Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Высказывания. Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).
Содержание курса «Математика» в 5–6 классах
Натуральные числа и нуль
Натуральный ряд чисел и его свойства. Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.
Запись и чтение натуральных чисел.Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.
Округление натуральных чисел.Необходимость округления. Правило округления натуральных чисел.
Сравнение натуральных чисел, сравнение с числом 0. Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулём, математическая запись сравнений, способы сравнения чисел.
Действия с натуральными числами.Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.
Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.
Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения,обоснование алгоритмов выполнения арифметических действий.
Степень с натуральным показателем. Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.
Числовые выражения. Числовое выражение и его значение, порядок выполнения действий.
Деление с остатком. Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.
Свойства и признаки делимости. Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.
Разложение числа на простые множители.Простые и составные числа, решето Эратосфена. Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.
Алгебраические выражения. Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.
Делители и кратные. Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.
Дроби
Обыкновенные дроби. Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число). Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот. Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей. Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей. Арифметические действия со смешанными дробями. Арифметические действия с дробными числами. Способы рационализации вычислений и их применение при выполнении действий.
Десятичные дроби. Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.
Отношение двух чисел. Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.
Среднее арифметическое чисел. Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.
Проценты. Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.
Диаграммы. Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.
Рациональные числа
Положительные и отрицательные числа.Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.
Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.
Решение текстовых задач
Единицы измерений: длины, площади, объёма, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.
Задачи на все арифметические действия. Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Задачи на движение, работу и покупки. Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.
Задачи на части, доли, проценты. Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи. Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения текстовых задач: арифметический, перебор вариантов.
Наглядная геометрия
Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.
Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.
Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальнаясимметрии. Изображение симметричных фигур.
Решение практических задач с применением простейших свойств фигур.
История математики
Появление цифр, букв, иероглифов в процессе счёта и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией. Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел. Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена. Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ? Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.
Содержание курса «Алгебра» и «Геометрия» в 7–9 классах
Алгебра
Рациональные числа. Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью. Иррациональные числа. Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа .Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.
Тождественные преобразования
Числовые и буквенные выражения. Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.
Целые выражения. Степень с натуральным показателем и её свойства. Преобразования выражений, содержащих степени с натуральным показателем. Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращённого умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращённого умножения. Квадратный трёхчлен, разложение квадратного трёхчлена на множители.
Дробно-рациональные выражения. Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень. Преобразование выражений, содержащих знак модуля.
Квадратные корни. Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.
Уравнения и неравенства
Равенства. Числовое равенство. Свойства числовых равенств. Равенство с переменной.
Уравнения. Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).
Линейное уравнение и его корни. Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.
Квадратное уравнение и его корни. Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета.Теорема, обратная теореме Виета. Решение квадратных уравнений: использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.
Дробно-рациональные уравнения.Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений. Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.Простейшие иррациональные уравнения вида ,.Уравнения вида .Уравнения в целых числах.
Системы уравнений. Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными. Понятие системы уравнений. Решение системы уравнений. Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки. Системы линейных уравнений с параметром.
Неравенства. Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных. Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).Решение линейных неравенств.Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.Решение целых и дробно-рациональных неравенств методом интервалов.
Системы неравенств. Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных,квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.
Функции
Понятие функции. Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства,чётность/нечётность,промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по её графику. Представление об асимптотах.. Непрерывность функции. Кусочно- заданные функции.
Линейная функция. Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от её углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.
Квадратичная функция. Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.
Обратная пропорциональность. Свойства функции . Гипербола.
Графики функций. Преобразование графика функции для построения графиков функций вида. Графики функций,, ,.
Последовательности и прогрессии.Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и её свойства. Геометрическая прогрессия. Формула общего члена и суммыn первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.
Решение текстовых задач
Задачи на все арифметические действия. Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Задачи на движение, работу и покупки. Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объёмов выполняемых работ при совместной работе.
Задачи на части, доли, проценты. Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи. Решение логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).
Статистика и теория вероятностей
Статистика. Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое,медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение. Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.
Случайные события. Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.
Элементы комбинаторики. Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.
Случайные величины. Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании,в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
Геометрия. Геометрические фигуры.
Фигуры в геометрии и в окружающем мире. Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура». Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и её свойства, виды углов, многоугольники, круг.Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.
Многоугольники. Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.Четырёхугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.
Окружность, круг. Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырёхугольников, правильных многоугольников.
Геометрические фигуры в пространстве (объёмные тела). Многогранник и его элементы. Названия многогранников с разным положением и количеством граней.Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.
Отношения. Равенство фигур. Свойства равных треугольников. Признаки равенства треугольников. Параллельность прямых. Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.
Перпендикулярные прямые. Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.
Подобие. Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия. Взаимное расположение прямой и плоскости, двух окружностей.
Измерения и вычисления
Величины. Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла. Понятие о площади плоской фигуры и её свойствах. Измерение площадей. Единицы измерения площади. Представление об объёме и его свойствах. Измерение объёма. Единицы измерения объёмов. Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.
Расстояния. Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.
Геометрические построения. Геометрические построения для иллюстрации свойств геометрических фигур. Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному. Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней угла. Деление отрезка в данном отношении.
Геометрические преобразования
Преобразования. Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.
Движения. Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.
Векторы и координаты на плоскости.Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение. Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур. Применение векторов и координат для решения простейших геометрических задач.
История математики
Возникновение математики как науки, этапы её развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырёх. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э.Галуа.
Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
Геометрия и искусство. Геометрические закономерности окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса. Роль российских учёных в развитии математики: Л.Эйлер. Н.И.Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н.Колмогоров. Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н.Крылов. Космическая программа и М.В.Келдыш.
6. Тематическое планирование с определением основных видов учебной деятельности обучающихся.
5 класс
Темы программы | Кол-во часов | Кол-во контр. работ | Основные виды учебной деятельности |
Натуральные числа | 45 ч | 3 | Описыватьсвойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их. Выполнять вычисления с натуральными числами; вычислять сумму и неизвестные слагаемые, если известен результат сложения и другое слагаемое, использовать свойства сложения для упрощения вычислений. Выполнять действия вычитания, использовать свойства вычитания для упрощения вычитания. Анализировать и осмысливать текст задачи, переформулировать условия, извлекать необходимую информацию, моделировать условия с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, проверять ответ на соответствие условию. Выражать одни единицы измерения длин через другие Определять цену деления шкалы. Строить шкалы с помощью выбранных единичных отрезков. Вычислять числовое значение буквенного выражения при заданных значениях букв. Применять свойства сложения и вычитания для упрощения выражений. Читать и записывать числовые выражения, находить значения выражений, записывать решения задачи в виде числовых или буквенных выражений. Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам. Находитькоординаты точек и строить точки по их координатам. Решать комбинаторные задачи перебором вариантов. Представлять данные в виде таблиц и диаграмм; извлекать информацию из таблиц и диаграмм. |
Обыкновенные дроби | 35 ч | 2 | Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби. Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями. Записывать смешанное число в виде неправильной дроби и обратно. Выполнять действия со смешанными дробями. Распознавать обыкновенную дробь, правильные и неправильные дроби, смешанные числа. Читать и записывать обыкновенные дроби, смешанные числа. Сравнивать обыкновенные дроби с равными знаменателями. Складывать и вычитать обыкновенные дроби с равными знаменателями. Преобразовывать неправильную дробь в смешанное число, смешанное число в неправильную дробь. Уметь записывать результат деления двух натуральных чисел в виде обыкновенной дроби. |
Геометрические фигуры | 22 ч | 1 | Распознаватьна чертежах, рисунках и моделях геометрические фигуры, конфигурации фигур. Приводить примеры этих моделей. Изображатьгеометрические фигуры на клетчатой бумаге. Измерять длины отрезков. Строить отрезки заданной длины. Решать задачи на нахождение длин отрезков. Выражать одни единицы длин через другие. |
Десятичные дроби | 26 ч | 2 | Читать и записывать десятичные дроби. Представлять обыкновенные дроби в виде десятичных и десятичные дроби в виде обыкновенных; находить десятичные приближения обыкновенных дробей. Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями. Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях. Выполнять прикидку и оценку в ходе вычислений. Выполнять арифметические действия над десятичными дробями. Формулировать правило округления чисел. Анализировать и осмысливать текст задачи, переформулировать условия, извлекать необходимую информацию, моделировать условия с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, проверять ответ на соответствие условию. Находить среднее арифметическое нескольких чисел. Приводить примеры средних значений величины. Разъяснять, что такое «один процент». Представлять проценты в виде десятичных дробей и десятичные дроби в виде процентов. Находить процент от числа и число по его процентам. |
Геометрические тела | 10 ч | 1 | Распознаватьна чертежах и рисунках углы, многоугольники, в частности треугольники, прямоугольники. Распознавать в окружающем мире модели этих фигур. С помощью транспортира измерять градусные меры углов, строить углы заданной градусной меры, строить биссектрису данного угла. Классифицировать углы. Классифицировать треугольники по количеству равных сторон и по видам их углов. Описывать свойства прямоугольника. Находить с помощью формул периметры прямоугольника и квадрата. Решать задачи на нахождение периметров прямоугольника и квадрата, градусной меры углов. Строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи. Распознаватьна чертежах и рисунках прямоугольный параллелепипед, пирамиду. Распознавать в окружающем мире модели этих фигур. Изображать развёртки прямоугольного параллелепипеда и пирамиды. Находить объёмы прямоугольного параллелепипеда и куба с помощью формул. Выражать одни единицы объёма через другие. |
Введение в вероятность | 4 ч | Решатькомбинаторные задачи с помощью перебора вариантов. | |
Повторение | 13 ч | 1 | Знать материал, изученный в курсе математики за 5 класс. Уметь применять полученные знания на практике. Уметь логически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде. |
Резерв | 5 ч |
6 класс
Темы программы | Кол-во часов | Кол-во контр. работ | Основные виды учебной деятельности |
Положительные и отрицательные числа. Координаты. | 63 ч | 3 | Учитывать правило в планировании и контроле способа решения: уметь выполнять работу по несложному алгоритму арифметических действий с целыми числами;уметь сравнивать полученные результаты с учебной задачей. Различать способ и результат действия: отработка навыков вычислений с целыми и рациональными числами. Использование знаково-символических средств:изображение чисел точками на координатной прямой;запись геометрических величин с помощью формул. Осознанное и произвольное построение речевого высказывания в устной и письменной форме: чтение геометрической модели числа (координатная прямая, координатная плоскость). Ориентировка на разнообразие способов решения задач: сравнение чисел; арифметические действия с рациональными числами; вычисление модуля числа. Уметь формулировать собственное мнение и позицию: отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами. Уметь контролировать действия партнера: при работе в парах и самопроверке математических диктантов и самостоятельных работ. Уметь использовать речь для регуляции своего действия: овладение умениями «переводить» математические записи на обычный язык и наоборот, составлять математическую модель данной ситуации. |
Преобразование буквенных выражений | 38 ч | 2 | Учитывать правило в планировании и контроле способа решения: уметь выполнять работу по несложному алгоритму, индивидуально или совместно (всем классом);уметь сравнивать полученные результаты с учебной задачей. Различать способ и результат действия:составления буквенных выражений и умений находить значения полученных выражений; построения окружности, радиуса и диаметра, решения задач по формулам длины, площади и объема. Использование знаково-символических средств: уметь составлять несложные буквенные выражения;научиться распознавать на чертежах и моделях геометрические фигуры. Осознанное и произвольное построение речевого высказывания в устной и письменной форме: научиться правильно употреблять термины «уравнение», «корень уравнения»; понимать их в тексте, речи учителя; пользоваться языком геометрии для описания. Ориентировка на разнообразие способов решения задач: осуществлять в выражениях числовые подстановки и выполнять соответствующие вычисления; решение задач на составление буквенного выражения по данному условию; владеть практическими навыками использования геометрических инструментов для изображения фигур. Структурирование знания: актуализация знаний учащихся о практических навыках по составлению и нахождению значений буквенных выражений, уравнений, применению формул. |
Делимость натуральных чисел. | 32 ч | 2 | Формулировать определения делителя и кратного, простого и составного числа, свойства и признаки делимости. Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел.Классифицировать натуральные числа (чётные и нечётные, по остаткам от деления на 3 и т. п.). Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера). Верно использовать в речи термины: делитель, кратное, наибольший общий делитель, наименьшее общее кратное, простое число, составное число, чётное число, нечётное число, взаимно простые числа, числа-близнецы, разложение числа на простые множители.Решать текстовые задачи арифметическими способами. Выполнятьперебор всех возможных вариантов для пересчёта объектов или комбинаций, выделять комбинации, отвечающие заданным условиям. Находить объединение и пересечение конкретных множеств. Приводить примеры несложных классификаций из различных областей жизни. Иллюстрировать теоретико-множественные и логические понятия с помощью диаграмм Эйлера – Венна. |
Математика вокруг нас. | 30 ч | 1 | Учитывать правило в планировании и контроле способа решения: уметь строить диаграммы в виде геометрических фигур по несложному алгоритму, индивидуально или совместно (всем классом);уметь решать задачи на составление пропорции;уметь сравнивать полученные результаты с учебной задачей. Различать способ и результат действия:умение составлять пропорцию;отработка навыков построений диаграмм по заданным элементам. Использование знаково-символических средств: обозначение диаграмм; умение работать с простейшими формулами. Осознанное и произвольное построение речевого высказывания в устной и письменной форме: описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений. Ориентировка на разнообразие способов решения задач: применение простейших свойств плоских фигур при решении задач; умение различать прямую и обратную пропорциональность. Структурирование знания: умение применять математические знания при простейших практических и самостоятельных работ. Использование знаково-символических средств: уметь составлять схемы – дерева возможных вариантов. Осознанное и произвольное построение речевого высказывания в устной и письменной форме: описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений. Структурирование знания: умение применять математические знания при решении простейших практических и лабораторных работ. |
Итоговое повторение | 7 ч | 1 | Знатьматериал, изученный в курсе математики за 6 класс. Уметь применять полученные знания на практике. Уметьлогически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде. Уметьсамостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.); отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами. Учитьсякритично относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его. |
7 класс. Алгебра
Темы программы | Кол-во часов | Кол-во контр. работ | Основные виды учебной деятельности |
Глава 1. Математический язык, Математическая модель. | 13 ч | 1 | Находить значение числового выражения, значение алгебраического выражения при заданных значениях переменных. Воспроизведение прослушанной и прочитанной информации с заданной степенью свернутости. Подбор аргументов для объяснения решения, участие в диалоге. «Переводить» математические правила, законы в символическую форму, осуществлять «обратный перевод»; самостоятельно искать и отбирать необходимую для решения учебных задач информацию. Решать текстовые задачи, используя метод математического моделирования. Воспроизведение теории, прослушанной с заданной степенью свернутости, участие в диалоге, подбор аргументов для объяснения ошибки. Приведение примеров. Находить корень линейного уравнения с одной переменной, применять свойства, определять количество корней линейного уравнения с одной переменной. Отмечать на координатной прямой точку с заданной координатой, определять координату точки; определять вид промежутка. |
Глава 2. Линейная функция | 11 ч | 1 | По координатам точки определение её положения без построения, не производя построения, определение, в каком координатном угле расположена точка. Восприятие устной речи, проведение информационно-смыслового анализа текста и лекции, приведение и разбор примеров. Умение выделить и записать главное, привести примеры. Составлять уравнения прямых, параллельных осям координат; строить по координатам различные фигуры. Участие в диалоге, отражение в письменной форме своих решений, работа с математическим справочником, выполнение и оформление тестовых заданий. Умение преобразовывать линейное уравнение к виду линейной функции y = kx +m, находить значение функции при заданном значении аргумента, значение аргумента при заданном значении функции, строить график линейной функции; выполнять и оформлять задания программированного контроля. Находить неизвестные компоненты линейных функций, если задано взаимное расположение их графиков. Составление алгоритмов, отражение в письменной форме результатов деятельности, заполнение математических кроссвордов. |
Глава 3. Системы линейных уравнений | 13 ч | 1 | Решатьсистемы двух линейных уравнений методом подстановки и методом алгебраического сложения. Восприятие устной речи, участие в диалоге, аргументированный ответ, приведение примеров. Работа по заданному алгоритму, аргументирование ответа или ошибки. Решать текстовые задачи с помощью системы линейных уравнений на движение по дороге и реке, на части, на числовые величины и проценты. Отражение в письменной форме своих решений, формирование умения рассуждать. Решать системы линейных уравнений, выбирая наиболее рациональный путь, решать текстовые задачи повышенного уровня трудности. Участие в диалоге, понимание точки зрения собеседника, подбор аргументов для ответа на поставленный вопрос, составление конспекта, приведение примеров. |
Глава 4. Степень с натуральными числами | 6 ч | Находитьзначения сложных выражений со степенями, представлять число в виде произведения степеней. Проведениеинформационно-смыслового анализа прочитанного текста, участие в диалоге, пользоваться таблицей степеней при выполнении заданий повышенной сложности. Проведение информационно-смыслового анализа текста. Умение выводить формулы произведения и частного степеней одинаковыми показателями, применять их для упрощения вычислений со степенями. Восприятие устной речи, участие в диалоге, запись главного, приведение примеров. | |
Глава 5. Одночлены. Арифметические операции над одночленами. | 8 ч | 1 | Выполнениедействий с одночленами, приводя их стандартному виду. Владение диалогической речью, подбор аргументов, формулировка выводов, отражение в письменной форме результатов своей деятельности. |
Глава 6. Многочлены. Арифметические операции над многочленами. | 15 ч | 1 | Выполнять сложение и вычитание многочленов, преобразуя в многочлен стандартного вида, решать уравнения. Участие в диалоге, понимание точки зрения собеседника, подбор аргументов для ответа на поставленный вопрос. Применять правило умножения многочлена на одночлен для упрощения выражений, решения уравнений. Восприятие устной речи, проведение информационно-смыслового анализа текста и лекции, составление конспекта, приведение и разбор примеров. Использование для решения познавательных задач справочной литературы. Выводить формулы квадрата суммы и разности, разности квадратов и сумма кубов. Понимание геометрического обоснования этих формул. Выполнение преобразований многочленов по формулам. Подбор аргументов, соответствующих решению, участие в диалоге, проведение сравнительного анализа делать вывод о корректности операции деления многочлена на одночлен, выполнять деление многочлена на одночлен; пользоваться математическим справочником, рассуждать и обобщать, выступать с решением проблемы |
Глава 7. Разложение многочленов на множители. | 18 ч | 1 | Решать уравнения и сокращать дробь, разложив на множители. Ведение диалога, умение дать аргументированный ответ на поставленные выполнять вынесение за скобки общего многочленного множителя, владеть приёмом замены переменной. Отражение в письменной форме своих решений, формирование умения проводить сравнительный анализ пройденных тем. Сбор материала для сообщения по заданной теме вопросы. Выполнятьразложение многочлена на множители с помощью формул сокращенного умножения в простейших случаях. Отражение в письменной форме своих решений, рассуждение, выступление с решением проблемы, аргументированный ответ. Выполнять разложение многочленов на множители с помощью комбинации изученных приёмов. Восприятие Сокращать алгебраические дроби, раскладывая выражения на множители, применяя формулы сокращенного умножения; правильно оформлять работу, аргументировать свое решение, выбрать задания, соответствующие знаниям. |
Глава 8. Функция у = х2 | 9 ч | 1 | Чтение графиков по готовому чертежу, диалогической речью. Умение строить график на промежутке. Подбор аргументов, формулировка выводов, отражение в письменной форме результатов своей деятельности. Выполнять решение уравнений графическим способом.Воспроизведение прочитанной информации с заданной степенью свернутости, правильное оформление решений, выбор из данной информации нужной. Чёткое представление о кусочно-заданной функции, области определения, непрерывности функции, оперирование функциональной символикой, использование основных приемов чтения графика |
Элементы статистической обработки данных. | 9 ч | 1 | Работа с понятиями: ряд данных, объем ряда данных, размах ряда данных, мода ряда данных, правило умножения, способ упорядочивания данных, таблица распределения данных, номинативный ряд данных, бимодальные распределения, правило подсчета вероятности, частота результата, процентная частота, группировка различных данных. Построение круговых диаграмм. |
7 класс. Геометрия
Темы программы | Кол-во часов | Кол-во контр. работ | Основные виды учебной деятельности |
Глава 1. Начальные геометрические сведения. | 10 ч | 1 | Умение планировать и осуществлять деятельность; умение понимать и использовать математические средства наглядности. Изображение: точки, лучи, отрезки, углы и прямые. Обозначение их. Сравнение отрезков и углов. Работа с геометрическими инструментами: транспортиром и масштабной линейкой. Построение смежных и вертикальных углов. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, математических моделей, реальных предметов, строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль. |
Глава 2. Треугольники. | 17 ч | 1 | Знать и доказывать признаки равенства треугольников, теоремы о свойствах равнобедренного треугольника. Знать определения медианы, высоты, биссектрисы треугольника, определения окружности. Применение теоремы в решении задач; построение и распознавание медианы, высоты, биссектрисы; выполнение с помощью циркуля и линейки построения биссектрисы угла, отрезка равного данному, середины отрезка, прямой перпендикулярной данной. Основные задачи на построение с помощью циркуля и линейки: построение угла, равного данному, деление отрезка пополам, построение перпендикуляра к прямой, построение биссектрисы. |
Глава 3. Параллельные прямые. | 13 ч | 1 | Знать формулировки и доказательство теорем, выражающих признаки параллельности прямых. Работа с определением параллельных прямых и признаки параллельности прямых. Построение различными способами параллельных прямых. Нахождение на рисунке пары односторонних, накрест лежащих и соответственных углов, делать вывод о параллельности прямых. Решениезадач на применение аксиомы параллельных прямых и теорем об углах, образованных двумя параллельными прямыми и секущей. |
Глава 4. Соотношения междусторонами и углами треугольника. | 18 ч | 1 | Объяснять и иллюстрировать неравенство треугольника. Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, Исследовать свойства треугольника с помощью компьютерных программ. Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения. Интерпретировать полученный результат и сопоставлять его с условием задачи. |
Повторение. Решение задач. | 10 ч | 1 | Изучение, доказательство теоремы о сумме углов в треугольнике и ее следствия. Изучение классификации треугольников по углам. Изучение формулировок признаков равенства прямоугольных треугольников и определения наклонной, расстояния от точки до прямой. Знатьматериал, изученный в курсе математики за 7 класс. Владеть общим приемом решения задач. Уметь применять полученные знания на практике. Уметьлогически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде. |
8 класс. Алгебра
Темы программы | Кол-во часов | Кол-во контр. работ | Основные виды учебной деятельности |
Глава 1. Рациональные дроби | 22 ч | Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей. Выполнять действия с алгебраическими дробями.Представлять целое выражение в виде многочлена, дробное — в виде отношения многочленов; доказывать тождества. Формулировать определение степени с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений. |
Глава 2. Квадратные корни | 18 ч | Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать числа точками координатной прямой. Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа. Описывать множество действительных чисел. Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику. Формулировать определение квадратного корня из числа. Использовать график функции у = х2 для нахождения квадратных корней. Вычислять точные и приближенные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней. Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений. Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул. Исследовать уравнение вида; находить точные и приближенные корни при а > 0. | |
Глава 3. Квадратные уравнения | 21 ч | Распознавать линейные и квадратные уравнения, целые и дробные уравнения. Решать квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения. Исследовать квадратные уравнения по дискриминанту и коэффициентам. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат. | |
Глава 4. Неравенства | 20 ч | Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира. Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения. Выполнять вычисления с реальными данными. Выполнять прикидку и оценку результатов вычислений. Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при решении задач. Распознавать линейные неравенства. Решать линейные неравенства, системы линейных неравенств. Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций. Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса. Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контр примеры в аргументации. Конструировать математические предложения с помощью связок если ..., то ..., в том и только том случае, логических связок и, или. |
Глава 5. Степень с целым показателем. Элементы статистики. | 11 ч | Формулировать определение степени с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений. Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины. Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ. Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон) | |
6. Повторение | 10 ч | Знатьматериал, изученный в курсе математики за 8 класс Уметь применять полученные знания на практике. Уметь логически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде. |
8 класс. Геометрия
Темы программы | Кол-во часов | Кол-во контр. работ | Основные виды учебной деятельности |
Глава 5. Четырехугольники. | 14 ч | Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции;распознавать и изображать их на чертежах и рисунках. Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции. Исследовать свойства четырехугольников с помощью компьютерных программ. Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи. | |
Глава 6. Площадь. | 14 ч | Формулировать и доказывать теорему Пифагора и обратную ей. Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции. Находить площадь многоугольника разбиением на треугольники и четырехугольники. Объяснять и иллюстрировать отношение площадей подобных фигур. Решать задачи на вычисление площадей треугольников, четырехугольников и многоугольников. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи. | |
Глава 7. Подобные треугольники. | 19 ч | Формулировать определение подобных треугольников. Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса. Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла. Исследовать свойства треугольника с помощью компьютерных программ. Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения. Интерпретировать полученный результат и сопоставлять его с условием задачи. |
Глава 8. Окружность. | 16 ч | Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью. Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью. Формулировать соответствие между величиной центрального угла и длиной дуги окружности. Изображать, распознавать и описывать взаимное расположение прямой и окружности. Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ. Решать задачи на вычисление линейных величин, градусной меры угла. Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи. | |
Повторение. Решение задач. | 5 ч | Знатьматериал, изученный в курсе математики за 8 класс. Владеть общим приемом решения задач. Уметь применять полученные знания на практике. Уметьлогически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде. |
9 класс. Алгебра
Темы программы | Кол-во часов | Кол-во контр. работ | Основные виды учебной деятельности |
Свойства функций. Квадратичная функция. | 22 ч | Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций. Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления. Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей. Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии. Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу. Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков функций ,,,, в зависимости от значений коэффициентов, входящих в формулы. Строить графики изучаемых функций; описывать их свойства. | |
Уравнения и неравенства с одной переменной. | 14 ч | Распознавать линейные и квадратные уравнения, целые и дробные уравнения. Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения. Исследовать квадратные уравнения по дискриминанту и коэффициентам. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат. Распознавать линейные и квадратные неравенства.Решать квадратные неравенства на основе графических представлений. |
Уравнения и неравенства с двумя переменными. | 17 ч | Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными. Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; Решать системы двух уравнений с двумя переменными, указанные в содержании. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; Решать составленную систему уравнений; интерпретировать результат. Строить графики уравнений с двумя переменными.Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков. Решать и исследовать уравнения и системы уравнений на основе функционально-графических представлений уравнений. | |
Прогрессии. | 14 ч | Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности. Вычислять члены последовательностей, заданных формулой n-го члена или рекуррентной формулой.Устанавливать закономерность в построении последовательности, если известны первые несколько ее членов. Изображать члены последовательности точками на координатной плоскости. Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых п членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул. Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически. Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора). | |
Элементы комбинаторики и теории вероятностей. | 12 ч | Проводитьслучайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты.Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путём. Решатьзадачи на нахождение вероятностей событий. Приводитьпримеры случайных событий, в частности достоверных и невозможных событий, маловероятных событий. Приводить примеры равновероятностных событий. Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций. Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. П.). Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления. Решать задачи на вычисление вероятности с применением комбинаторики. |
Множества. Элементы логики. | 10 ч | Приводитьпримеры конечных и бесконечных множеств, несложных классификаций из различных областей жизни. Находитьобъединение и пересечение конкретных множеств, разность множеств. Иллюстрироватьтеоретико-множественные понятия с помощью кругов Эйлера. Использоватьтеоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса. Иллюстрироватьматематические понятия и утверждения примерами.Использоватьпримеры и контрпримеры в аргументации. Конструироватьматематические предложения с помощью логических связок если то, в том и только в том случае, и, или. | |
Повторение итоговое. | 13 ч | Знатьматериал, изученный в курсе математики за 9 класс Уметь применять полученные знания на практике. Уметь логически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде. |
9 класс. Геометрия
Темы программы | Кол-во часов | Кол-во контр. работ | Основные виды учебной деятельности |
Глава 9. Векторы. | 8 ч | Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов. Вычислять длину и координаты вектора. Находить угол между векторами. Выполнять операции над векторами. Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства. | |
Глава 10. Метод координат. | 10 ч | Объяснять и иллюстрировать понятие декартовой системы координат. Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности. Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства. | |
Глава 11. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. | 11 ч | Формулировать и доказывать теорему соотношениях между сторонами и углами треугольника. Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла. Формулировать и доказывать теоремы синусов и косинусов. Находить угол между векторами, скалярное произведение векторов, формулировать и обосновывать утверждения о свойствах скалярного произведения векторов; использовать скалярное произведение векторов при решении задач. |
Глава 12. Длина окружности и площадь круга. | 11 ч | Распознавать многоугольники, формулировать определение и приводить примеры многоугольников. Формулировать и доказывать теорему о сумме углов выпуклого многоугольника. Исследовать свойства многоугольников с помощью компьютерных программ. Формулировать и доказывать теоремы о вписанной и описанной окружностях многоугольника. Объяснять понятия длины окружности и площади круга; выводить формулы для вычисления длины окружности и длины дуги, площади круга и площади кругового сектора. Решать задачи на доказательство и вычисления.Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи. Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ. Решать задачи на построение, доказательство и вычисления | |
Глава 13. Движения. | 8 ч | Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот. Исследовать свойства движений с помощью компьютерных программ. Выполнять проекты по темам геометрических преобразований на плоскости. | |
Глава 14. Начальные сведения из стереометрии. | 8 ч | Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали, какой многогранник называется выпуклым, призма, высота призмы, параллелепипед, пирамида, цилиндр, конус, сфера, шар. Объяснять, что такое объём многогранника, площадь поверхности многогранника. Исследоватьсвойства многогранников. Находить объём и площадь поверхности многогранника. Уметьстроить и распознавать многогранники. Уметьлогически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде. | |
Об аксиомах геометрии. | 2 ч | Воспроизводить формулировки определений, аксиом, теорем; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы. | |
Повторение. Решение задач. | 10 ч | Знатьматериал, изученный в курсе математики за 7-9 классы. Владеть общими приемами решения задач. Уметь применять полученные знания на практике. Уметь логически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде. |
7. Описание учебно-методического и материально-технического обеспечения
образовательного процесса по предмету «Математика. Алгебра. Геометрия»
Литература для учителя:
Зубарева И. И. Математика. 5 класс: учебник для общеобразовательных учреждений / И. И. Зубарева, А. Г. Мордкович – М.: Мнемозина, 2013
Зубарева И. И. Математика. 6 класс: Рабочая тетрадь № 1, №2: учебное пособие для учащихся общеобразовательных учреждений / И. И. Зубарева – М.: Мнемозина, 2013
Зубарева И. И. Математика. 6 класс: учебник для общеобразовательных учреждений / И. И. Зубарева, А. Г. Мордкович – М.: Мнемозина, 2014
Алгебра. 7 класс. В 2 ч. Часть 1. Учебник./ А.Г. Мордкович, П.В. Семенов.- М.: Мнемозина, 2013.
Алгебра. 7 класс. В 2 ч. Часть 2.: задачник для общеобразовательных учреждений/ А.Г. Мордкович и др.- М.: Мнемозина, 2013.
Алгебра. Контрольные работы для 7 класса общеобразовательных учреждений / Л.А. Александрова; под ред.А.Г. Мордковича,- М.: Мнемозина, 2013.
Алгебра. Самостоятельные работы для 7 класса общеобразовательных учреждений / Л.А. Александрова; под ред.А.Г. Мордковича,- М.: Мнемозина, 2013.
События. Вероятности. Статистическая обработка данных: Доп. Параграфы к курсу алгебры 7-9 кл. общеобразоват. Учреждений / А.Г. Мордкович, П.В. Семенов.- М.: Мнемозина, 2013.
Геометрия, 7-9: Учеб. для общеобразовательных учреждений /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.-М. : Просвещение, 2013 г.
Геометрия. Рабочая тетрадь для 7 класса. Пособие для учащихся общеобразовательных учреждений.- М: Просвещение, 2013 г.
Уроки геометрии в 7-9 классах. Методические рекомендации и примерное планирование: К учебнику Л.С. Атанасяна и др.- М.: Мнемозина, 2013.
Зубарева И.И. Математика. Методическое пособие для учителя / И.И. Зубарева, под редакцией И.И. Зубаревой, - М. : Мнемозина, 2013.
Зубарева И.И. Математика. 5 класс. Самостоятельные работы для учащихся общеобразовательных учреждений/ И.И. Зубарева и др. – М.: Мнемозина, 2013
Литература для обучающихся:
Зубарева И. И. Математика. 5 класс: учебник для общеобразовательных учреждений / И. И. Зубарева, А. Г. Мордкович – М.: Мнемозина, 2013
Зубарева И. И. Математика. 6 класс: учебник для общеобразовательных учреждений / И. И. Зубарева, А. Г. Мордкович – М.: Мнемозина, 2014
Алгебра. 7 класс. В 2 ч. Часть 1. Учебник./ А.Г. Мордкович, П.В. Семенов.- М.: Мнемозина, 2013.
Алгебра. 7 класс. В 2 ч. Часть 2.: задачник для общеобразовательных учреждений/ А.Г. Мордкович и др.- М.: Мнемозина, 2013.
Геометрия, 7-9: Учеб. для общеобразовательных учреждений /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.-М. : Просвещение, 2013 г.
Таблицы:
Графики функций;
Тригонометрия: тригонометрические формулы, формулы приведения, тригонометр, решение тригонометрических уравнений и неравенств;
Геометрия: начальные геометрические сведения, треугольники и свойства треугольников.
Интернет-ресурсы:
www.ege.moipkro.ru
www.fipi.ru
ege.edu.ru
www.mioo.ru
www.1september.ru
www.math.ru
www.allmath.ru
www.uztest.ru
http://schools.techno.ru/tech/index.html
http://www.catalog.alledu.ru/predmet/math/more2.html
http://shade.lcm.msu.ru:8080/index.jsp
http://wwwexponenta.ru/
http://comp-science.narod.ru/
http://methmath.chat.ru/index.html
http://www.mathnet.spb.ru/
http://vip.km.ru/vschool/demo/education.asp?subj=292
http://som.fio.ru/subject.asp?id=10000191
http:// education.bigli.ru
http://informatika.moipkro.ru/intel/int mat.shtml
8. Планируемые результаты изучения учебного предмета.
Натуральные числа. Дроби. Рациональные числа
Выпускник научится:
• понимать особенности десятичной системы счисления;
• оперировать понятиями, связанными с делимостью натуральных чисел;
• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
• сравнивать и упорядочивать рациональные числа;
• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математическихзадач и задач из смежных предметов, выполнять несложные практические расчёты.
Выпускник получит возможность:
• познакомиться с позиционными системами счисления с основаниями, отличными от 10;
• углубить и развить представления о натуральных числах и свойствах делимости;
• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Действительные числа
Выпускник научится:
• использовать начальные представления о множестве действительных чисел;
• оперировать понятием квадратного корня, применять его в вычислениях.
Выпускник получит возможность:
• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;
• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Измерения, приближения, оценки
Выпускник научится:
• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения
Выпускник научится:
• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
• выполнять разложение многочленов на множители.
Выпускник получит возможность научиться:
• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
Уравнения
Выпускник научится:
• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
Выпускник получит возможность:
• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
Неравенства
Выпускник научится:
• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
• применять аппарат неравенств для решения задач из различных разделов курса.
Выпускник получит возможность научиться:
• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
Основные понятия. Числовые функции
Выпускник научится:
• понимать и использовать функциональные понятия и язык (термины, символические обозначения);
• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
Выпускник получит возможность научиться:
• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками);
• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
Числовые последовательности
Выпускник научится:
• понимать и использовать язык последовательностей (термины, символические обозначения);
• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
Выпускник получит возможность научиться:
• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;
• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.
Описательная статистика
Выпускник научится использовать простейшие способы представления и анализа статистических данных.
Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.
Случайные события и вероятность
Выпускник научится находить относительную частоту и вероятность случайного события.
Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
Комбинаторика
Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.
Элементы теории множеств и математической логики
Выпускник научится:
оперироватьпонятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность;
определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания;
оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
приводить примеры и контрпримеры для подтвержнения своих высказываний.
Выпускник получит возможность:
распознавать логически некорректные высказывания;
строить цепочки умозаключений на основе использования правил логики;
использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач.
История математики
Выпускник научится:
описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
понимать роль математики в развитии России, характеризовать вклад выдающихся математиков в развитие математики и научных областей;
рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.
Выпускник получит возможность:
понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;
рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.
Наглядная геометрия
Выпускник научится:
• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
• строить развёртки куба и прямоугольного параллелепипеда;
• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
• вычислять объём прямоугольного параллелепипеда.
Выпускник получит возможность:
• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
• углубить и развить представления о пространственных геометрических фигурах;
• научиться применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
Выпускник научится:
• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 00 до 1800, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
• решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
• научиться решать задачи на построение методом геометрического места точек и методом подобия;
• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
Выпускник научится:
• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
• вычислять длину окружности, длину дуги окружности;
• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность научиться:
• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
• вычислять площади многоугольников, используя отношения равновеликости;
• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.
Координаты
Выпускник научится:
• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
• использовать координатный метод для изучения свойств прямых и окружностей.
Выпускник получит возможность:
• овладеть координатным методом решения задач на вычисления и доказательства;
• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».
Векторы
Выпускник научится:
• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
• овладеть векторным методом для решения задач на вычисления и доказательства;
• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».
20
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/179376-programma-osnovnogo-obschego-obrazovanija-po-
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Организация учебного процесса в условиях ФГОС СПО»
- «Особенности работы концертмейстера в классе хореографии»
- «Организация образовательного процесса в соответствии с ФГОС СОО: преподавание физики»
- «ФГОС ООО от 2021 года и ФГОС СОО с изменениями от 2022 года: особенности реализации образовательного процесса»
- «Профессиональная деятельность методиста образовательной организации: содержание и методы работы по ФГОС»
- «Особенности патриотического воспитания дошкольников в условиях реализации ФГОС ДО»
- Педагогика и методика преподавания английского языка
- Теория и методика преподавания основ безопасности жизнедеятельности
- Педагогика и методика преподавания истории и кубановедения
- Педагогика и методика преподавания математики
- Основы духовно-нравственной культуры народов России: теория и методика преподавания в образовательной организации
- Методика организации образовательного процесса в начальном общем образовании

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.