Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
03.11.2017

Проблемы визуализации решений математических задач

Рассмотрение проблем визуализации решения математических задач

Содержимое разработки

ФГБОУ ВО «Мордовский государственный педагогический институт имени М.Е. Евсевьева»

Физико-математический факультет

Кафедра информатики и вычислительной техники

Реферат

Проблемы визуализации решений математических задач

Выполнила: студент группы МДИ-113

Артемьев А.Ю.

Саранск 2017

Проблемы визуализации решений математических задач

Визуализация в обучении математике - одна из "вечных" проблем математического образования. Она была актуальна еще в 1957 г., когда Пьер Ван Хиель впервые представил модель обучения геометрии с опорой на развитие визуального мышления учащихся. Необычайно популярна эта тема и сегодня. В 2001 г. Национальный совет учителей математики США целиком посвятил свой очередной ежегодник проблеме представления знаний в обучении школьной математике.

Попытаемся рассмотреть взаимодействие визуального и других способов представления информации.

Можно выделить следующие уровни взаимодействия:

1. Динамическое визуальное представление

реальный процесс;

виртуальная реальность;

видео, изображение.

2. Статическое визуальное представление

реальный объект;

фотография;

иллюстрация/рисунок/картина.

3. Абстрактное визуальное представление

образ/график/чертеж;

концептуальная карта/схема;

абстрактный знак/обозначение.

4. Символическое/вербальное представление

определение/описание;

название/ярлык;

класс/род.

Английский психолог Р.Скемп в своей книге "Психология учения математике" описывает следующую ситуацию, подтолкнувшую его к изучению проблемы визуализации и разработке теории схемы. 

Однажды коллега пригласил его посетить школу, в которой впоследствии тому предстояло работать. По телефону Скемп получил инструкцию (вербальный маршрут) о том, как доехать до школы: "После въезда в город по автомобильной магистрали А45 надо повернуть налево, затем на следующем переулке повернуть опять налево, на следующем светофоре - снова налево, далее через два светофора - направо, прямо проехать парковую зону и, наконец, повернуть налево к зданию школы". Поскольку по ходу телефонного разговора Р.Скемп пытался записать основные пункты маршрута, то в блокноте у него осталась следующая запись:

А45
налево
налево
налево
направо
прямо
налево
школа

Нетрудно догадаться, что Скемп заблудился тут же после въезда в город. Ему пришлось купить карту города и по ней сориентироваться, как добраться до школы. Очевидно, что в некоторых случаях вербальная модель представления информации дает заведомо ошибочную картину для решения задачи. 

Концептуальное знание во многих случаях связано с визуальным представлением знаний, в то время как процедурное - с числовым, абстрактным и символическим представлением учебной информации. Например, концептуальное понимание того факта, что дроби 3/4 и 9/12 эквивалентны, предполагает визуализацию этого равенства. В этом случае ученик видит, что обе дроби выражают одно и то же число (рис.1). Для процедурного понимания указанного факта учащийся должен знать вычислительную процедуру: как из одной дроби получить другую - умножением/делением числителя и знаменателя дроби на одно и то же число 3.

В процессе обучения математике важны оба типа знания: и концептуальное, и процедурное. Игнорирование одного из них приводит к существенным пробелам в математической подготовке школьников.

В отечественной психологии математики проблема соотношения визуального и других способов представления информации достаточно подробно рассмотрена в известной работе В.А. Крутецкого "Психология математических способностей школьников" на примере аналитического, геометрического и гармонического типов склада математического ума школьников. Так, ученики с преобладающим аналитическим типом математического мышления имеют очень сильно развитые словесно-логические способности и не нуждаются в использовании наглядно-образных опор в процессе решения математических задач и доказательства теорем. Дети с геометрическим типом мышления, напротив, имеют слабые словесно-логические, но очень сильно развитые наглядно-образные способности, что мотивирует их использовать наглядные опоры в решении задач. У учащихся гармонического типа, которых в экспериментах В.А. Крутецкого оказалось большинство, наблюдается равновесие в развитии словесно-логической и наглядно-образной составляющих математического мышления. 
Место и роль визуализации в процессе обучения математике, в частности геометрии, были предметом масштабного исследования супругов Пьера и Дины (Гелдоф) Ван Хиель. Они построили модель обучения геометрии, согласно которой существует определенная зависимость между уровнем обучения геометрии и уровнями развития геометрического мышления школьников.

В соответствии с данной моделью для успешного изучения геометрии необходимо последовательно пройти цепочку: фигуры - свойства - доказательства - аксиоматический метод. Это помогает спроектировать сквозной курс геометрии, проходящий через все ступени школы: начиная с изучения геометрических форм в начальной школе, далее к изучению свойств геометрических фигур на средней ступени школы, затем к осмыслению строгости, доказательности в геометрических рассуждениях и, наконец, к аксиоматическому методу построения геометрии в старших классах. В связи с этим выделяются следующие уровни развития геометрического мышления школьников.

Нулевой уровень - визуализация. Ученик умеет распознавать различные геометрические формы, знает названия различных геометрических фигур, различает фигуры на плоскости и в пространстве.

Первый уровень - анализ. Ребенок способен распознавать отдельные элементы геометрических фигур, понимать взаимоотношения между элементами, усваивать свойства отдельных элементов и геометрических фигур в целом, готов к первичному восприятию методов геометрических преобразований. 

Второй уровень - неформальная дедукция. Этот уровень характеризуется способностью школьника к классификации геометрических фигур по различным признакам и свойствам, к построению простейших умозаключений, а также готовностью к усвоению предложенных учителем доказательств элементарных геометрических теорем. Однако ученик пока еще не способен конструировать свои собственные доказательства. 

Третий уровень - дедукция. Принципиальное качественное отличие данного уровня от предыдущего заключается в том, что учащийся способен самостоятельно решать задачи на доказательство, строить доказательства теорем, устанавливать взаимоотношения между различными теоремами курса геометрии, а также владеть различными методами доказательства.

Четвертый уровень - аксиоматика. На данном уровне ученик способен воспринимать различные аксиоматические модели построения геометрии как науки. Он также готов к неформальному переносу идеи аксиоматического метода в другие области знания.
Исходя из этого П. Ван Хиель предлагает начинать обучение геометрии с самого раннего возраста, ибо даже малыши в старших группах детского сада способны распознавать простейшие геометрические формы и фигуры (квадратики, кубики, кружки, шарики, треугольники, пирамидки и т.д.).

Начало 90-х годов в математическом образовании многих англоязычных стран (в частности, США) ознаменовалось движением по реформированию обучения другой математической дисциплине - математическому анализу, а точнее, его части, которую американцы называют Calculus, что в переводе означает "исчисление" (имеются в виду элементы дифференциального и интегрального исчисления).

Фундаментальной работой в этом направлении явилась книга "Визуализация в обучении математике", изданная в 1990 г. Математической ассоциацией Америки (МАА). В этом сборнике статей видных педагогов-математиков убедительно доказан тот факт, что многие проблемы в обучении математике, и в частности началам анализа, связаны с недостаточной визуальной поддержкой абстрактных научных понятий. Так, лишь только 5,4% учащихся (из выборки - 937 испытуемых), прошедших курс начал анализа, смогли правильно вычислить заданный интеграл (3S-3 /x+2/dx).

Одной из причин такого низкого результата при вычислении достаточно элементарного интеграла, как показали результаты эксперимента, является оторванность аналитических процедур от визуальных (геометрических).

Отсюда можно сформулировать проблемы визуализирования решения математических задач:

1. Не достаточное внедрение визуализирования решений в школьном обучении. В учебниках есть визуальные представления некоторых математических задач. Но это не дает достаточной базы знаний учеников, чтобы в дальнейшем использовать этот метод как решение математических задач.

2. Сложность представления визуального решения математических задач. Некоторые задачи без визуального представления решений не дают полноту картины самой задачи, но есть задачи, у которых тяжело найти визуальное представление решения.

3. Сложность освоения ПО по визуализации решений математических задач.

Список использованных источников

Шмойлова, Р. А. Теория статистики / В. Г. Минашкин, Р. А. Шмойлова, Н. А. Садовникова, Л. Г. Моисейкина, Л. Г. Рыбыкова. – М.:Московская финансовопромышленная академия, 2004. – 198 с.

Работа по дисциплине «Компьютерная графика» [Электронный ресурс] / / Московский государственный университет электроники и математики. М., 2012. URL: http://rud.exdat.com/docs/index-604186.html

Основные правила построения изображений [Электронный ресурс] URL: http://www.myshared.ru/slide/661224/

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/277610-problemy-vizualizacii-reshenij-matematicheski

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки