Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
25.11.2017

Методическая разработка к уроку по теме «Логарифмы и их свойства»

Формирование понятия логарифма, изучение основных свойств логарифмов и формирование умений применять свойства логарифмов при решении заданий.

Содержимое разработки

МБОУ СОШ №20

г. Шахты Ростовская область

Учитель математики: Николаева Евгения Николаевна

Тема урока: Логарифмы и их свойства.

Цель урока:

Образовательная – сформировать понятие логарифма, изучить основные свойства логарифмов и способствовать формированию умения применять свойства логарифмов при решении заданий.

Развивающая – развивать логическое мышление; технику вычисления; умение рационально работать.

Воспитательная – содействовать воспитанию интереса к математике, воспитывать чувство самоконтроля, ответственности.

Тип урока: Урок изучения и первичного закрепления новых знаний.

Оборудование: компьютер, мультимедийный проектор, презентация "Логарифмы и их свойства", раздаточный материал.

Учебник: Алгебра и начала математического анализа,10-11. Ш. А. Алимов, Ю. М. Колягин и др., Просвещение, 2014.

Ход урока:

1. Организационный момент: проверка готовности учащихся к уроку.

2. Повторение пройденного материала.

Вопросы учителя:

1) Дать определение степени. Что называется, основанием и показателем? (Корень n-ой степени из числа а называется такое число, n-я степень которого равна а.34 = 81.)

2) Сформулируйте свойства степени.

3. Изучение новой темы.

Тема сегодняшнего урока - Логарифмы и их свойства (откройте тетради и запишите дату и тему).

На этом уроке мы познакомимся с понятием «логарифм», также рассмотрим свойства логарифмов.

Зададим вопрос:

1) В какую степень нужно возвести 5, чтобы получить 25? Очевидно, во вторую. Показатель степени, в которую нужно возвести число 5, чтобы получить 25, равен 2.

2) В какую степень нужно возвести 3, чтобы получить 27? Очевидно, в третью. Показатель степени, в которую нужно возвести число 3, чтобы получить 27, равен 3.

Во всех случаях мы искали показатель степени, в которую нужно что-то возвести, чтобы что-то получить. Показатель степени, в которую нужно что-то возвести называется логарифмом и обозначается log.

Число, которое мы возводим в степень, т.е. основание степени, называется основанием логарифма и записывается в нижнем индексе. Затем пишется число, которое мы получает, т.е. число, которое мы ищем: log5 25=2

Эта запись читается так: «Логарифм числа 25 по основанию 5». Логарифм числа 25 по основанию 5- это показатель степени, в которую нужно возвести 5, чтобы получить 25. Этот показатель равен 2.

Аналогично разберём второй пример.

Дадим определение логарифма.

Определение.Логарифмом числа b>0 по основанию a>0, a ≠ 1 называется показатель степени, в которую надо возвести число a, чтобы получить число b.

Логарифмом числаb по основанию a обозначаетсяlogab.

История возникновения логарифма:

Логарифмы были введены шотландским математиком Джоном Непером (1550-1617) и математиком Иостом Бюрги (1552-1632). 

Бюрги пришел к логарифмам раньше, но опубликовал свои таблицы с опозданием (в 1620г.), а первой в 1614г. появилась работа Непера «Описание удивительной таблицы логарифмов». 

С точки зрения вычислительной практики, изобретение логарифмов можно смело поставить рядом с другими, более древним великим изобретением – нашей десятичной системой нумерации. 

Через десяток лет после появления логарифмов Непера английский ученый Гунтер изобрел очень популярный прежде счетный прибор – логарифмическую линейку. Она помогала астрономам и инженерам при вычислениях, она позволяла быстро получать ответ с достаточной точностью в три значащие цифры. Теперь ее вытеснили калькуляторы, но без логарифмической линейки не были бы созданы ни первые компьютеры, ни микрокалькуляторы. 

Рассмотрим примеры:

log327=3; log525=2; log255=1/2;

log51/125=-3; log-2(-8)- не существует; log51=0; log44=1

Рассмотрим такие примеры:

10. loga1=0,а>0, a ≠ 1;

20. logaа=1,а>0, a ≠ 1.

Эти две формулы являются свойствами логарифма. Ими можно пользоваться при решении задач.

Как перейти из логарифмического равенства к показательному? logаb=с, с – это логарифм, показатель степени, в которую нужно возвести а, чтобы получить b. Следовательно, а степени с равенb: ас=b.

Выведем основное логарифмическое тождество: а log a b =b. (Доказательство приводит учитель на доске).

Рассмотрим пример.

5 log5 13 =13

Рассмотрим ещё важные свойства логарифмов.

Свойства логарифмов:

3°. logа ху = logах + logау.

4°. logа х/у = logах - logау.

5°. logахp = p · logах,для любого действительного p.

Рассмотрим пример на проверку 3 свойства:

log28 + log216=log28∙16=log2 128=7

3 +4 = 7

Рассмотрим пример на проверку 5 свойства:

3log28=log283=log2512 =9

3∙3 = 9

4.Закрепление.

Задание 1. Назовите свойство, которое применяется при вычислении следующих логарифмов, и вычислите (устно):

log66

log0,51

log63+ log62

log36- log32

log448

Задание 2.

Перед вами 8 решённых примеров, среди которых есть правильные, остальные с ошибкой. Определите верное равенство (назовите его номер), в остальных исправьте ошибки.

log232+log22=log264=6

log553 = 2;

log345 - log35 = log340

3∙log24 = log2 (4∙3)

log315 + log33 = log345;

2∙log56 = log512

3∙log23 = log227

log2162= 8.

Задание 3.

Работа с учебником. №271, 275, 280,290(1,2), 291(1,2)

Проверка ЗУН – самостоятельная работа по карточкам.

Вариант 1.

Вычислите:

log327

log4 8

log49 7

log55

Вариант 2.

Вычислите:

log416

log25125

log82

log66

Подведение итогов.

С каким математическим понятием вы познакомились на уроке?

Какие свойства логарифмов вы запомнили? (Записать на доске).

Сформулировать и записать основное логарифмическое тождество.

7. Домашнее задание.

п 15-16, № 273, 276,293(1-3).

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/282168-metodicheskaja-razrabotka-k-uroku-po-teme-log

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

Комментарии
Тема "Логарифмы и их свойства" является очень важной, так как на нее в дальнейшем нужно будет опираться при решении логарифмических уравнений , неравенств и их систем. В разработке занятия, на мой взгляд, нет "насыщенности", нет разноуровневых заданий, рассчитан урок только на слабую аудиторию. Не понятно, кто дает историческую справку об открытии логарифмов. Не показано, на какой стадии применяется компьютер.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки