Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
14.01.2019

Рабочая программа по математике 10 11 ( базовый и профильный уровни)

Рабочая программа по математике 10-11 классы, базовый и профильный уровни. ФГОС
Учебники:
С. М. Никольский и др. Алгебра и начала математического анализа
Л.С. Атанасян и др. Геометрия

Содержимое разработки

РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ

10-11 классы

Составили :

Поверинова Марина Петровна – учитель математики МАОУ СШ № 143 г. Красноярска

Лузина Евгения Николаевна – учитель математики МАОУ СШ № 143 г. Красноярска

При составлении рабочей программы использовались источники:

Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа. Сборник рабочих программ. 10-11 классы. Базовый и углубленный уровни. Составитель Бурмистрова Т.А.

Геометрия. Сборник рабочих программ. 10-11 классы. Базовый и углублённый уровни Составитель Бурмистрова Т.А

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по математике для среднего общего образования разработана на основе фундаментального ядра общего образования и в соответствии с требованиями ФГОС к структуре и результатам освоения основных образовательных программ среднего общего образования. В них соблюдается преемственность с примерной рабочей программой основного общего образования.

Для реализации рабочей программы используется учебно-методический комплект, включающий:

Алгебра и начала математического анализа. 10 класс: учебник для общеобразовательных учреждений: базовый и профильный уровни / С. М. Никольский [и др.]. - М. : Просвещение, 2017. -(МГУ - школе).

Потапов, М. К. Алгебра и начала анализа: дидактические материалы для 10 класса / М. К. Потапов. - М.: Просвещение, 2017.

Потапов, М. К. Алгебра и начала математического анализа : 10 класс : базовый и профильный уровни : кн. для учителя / М. К. Потапов, А. В. Шевкин. - М.: Просвещение, 2014.

Геометрия 10-11. Учебник для общеобразовательных учреждений. Л.С. Атанасян [и др.]. - М. : Просвещение, 2017.

Практическая значимость школьного курса математики обусловлена тем, что его объектами являются отношения действительного мира. Математическая подготовка необходима для понимания принципов устройств и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С ее помощью моделируются и изучаются явления и процессы, происходящие в природе.

Курс математики является одним из опорных курсов старшей школы: он обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла. Развитие логического мышления учащихся при изучении математики способствует усвоению предметов гуманитарного цикла. Практические умения и навыки математического характера необходимы для трудовой и профессиональной подготовки школьников. При обучении математики формируются умения и навыки умственного труда – планирование своей работы, поиск рациональных путей ее выполнения, критическая оценка результатов. В процессе обучения школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и емко, приобрести навыки четкого, аккуратного и грамотного выполнения математических записей.

В соответствии с принятой Конституцией развития математического образования в Российской Федерации математическое образование должно решать следующие ключевые задачи:

предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимых для дальнейшей успешной жизни в обществе;

обеспечить необходимое стране число выпускников, математическая подготовка которых достаточна для продвижения образования в различных направлениях и для практической деятельности, включая преподавания математики, математические исследования, работу в сфере информационных технологий и др.;

в основном общем и среднем общем образовании необходимо предусмотреть подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования.

Соответственно выделяются три направления требований к результат математического образования:

практико–ориентированное математическое образование (математика для жизни).

математика для использования в профессии, не связанной с математикой.

творческое направление, на которое нацелены те обучающиеся, которые планируют заниматься творческой и исследовательской работой в области математики, физики, экономики и других областях.

В соответствии с законом «Об образовании в Российской Федерации» (ст. 12 п. 7)организации, осуществляющие образовательную деятельность, реализуют эти требования в образовательном процессе с учетом примерной основной образовательной программы как на основе учебно-методических комплектов соответствующего уровня, входящих в Федеральный перечень МОиН РФ, так и с возможным использованием иных источников учебной информации (учебно-методические пособия, образовательные порталы и сайты и др.).

В соответствии с требованиями в программе выделены два уровня: базовый и профильный. Данная программа полностью отражает базовый и профильный уровень подготовки школьников по разделам программы. Она конкретизирует содержание тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познание, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации.

ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА В 10-11 КЛАССАХ

Учебный предмет «Математика» включен в Федеральный компонент учебного плана общеобразовательного учреждения, является обязательным для изучения. Учебный предмет «Математика» в классах уровня среднего общего образования дает представление о роли математики в современном мире, о способах применения математики в технике и в гуманитарных сферах. При изучении учебного предмета «математика» на уровне среднего общего образования продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа».

В курсе старшей школы, материал изученный  в основной школе, развивается в следующих направлениях:

систематизация сведений о числах; формирование представлений о расширении числовых множеств  от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики;

совершенствование техники вычислений; развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Цели:

Изучение курса математики на базовом уровне ставит своей целью повысить общекультурный уровень человека и завершить формирование относительно целостной системы математических знаний как основы любой профессиональной деятельности, не связанной непосредственно с математикой.

Науглублённом уровне в зависимости от потребностей обучающихся возможно изучение курса алгебры и начал математического анализа на двух уровнях: для подготовки специалистов инженерно-технического профиля и для подготовки научных кадров.

формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения  школьных  естественно - научных дисциплин,  для продолжения образования и освоения избранной специальности на современном уровне;

развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и  для самостоятельной  деятельности в области математики и ее приложений  в будущей профессиональной деятельности;

воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Задачи:

систематизировать сведения о числах; изучить новые виды числовых выражений и формул; совершенствовать практические навыки и вычислительную культуру, расширять и совершенствовать алгебраический аппарат, сформированный в основной школе, и применять его к решению математических задач;

расширить и систематизировать общие сведения о функциях, пополнить класс изучаемых функций, проиллюстрировать широту применения функций для описания и изучения реальных зависимостей;

изучить свойства пространственных тел, сформирование умения применять полученные знания для решения практических задач;

развивать представления о вероятностно-статистических закономерностях в окружающем мире, совершенствовать интеллектуальные и речевые умения путем обогащения математического языка, развития логического мышления;

ознакомить с основными идеями и методами математического анализа.

МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе среднего общего образования отводится:

На базовом уровне – 340 ч из расчета 5 ч в неделю, 3 часа на курс  алгебры (102 часов в 10 классе,  102 часов в 11 классе), 2 часа на курс геометрии (68 часов в 10 классе, 68 часов в 11 классе).

На профильном уровне - 408 ч из расчета 6 ч в неделю, 4 часа на курс  алгебры (136 часов в 10 классе,  136 часов в 11 классе), 2 часа на курс геометрии (68 часов в 10 классе, 68 часов в 11 классе).

ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

ОСВОЕНИЯ ПРЕДМЕТА

Изучение алгебры и начал математического анализа в старшей школе даёт возможность достижения обучающимися следующих результатов.

Личностные:

- сформированность мировоззрения, соответствующего современному уровню развития науки; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

- готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения;

- навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;

- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

- эстетическое отношение к миру, включая эстетику быта, научного и технического творчества;

- осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем

Метапредметные:

- умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;

- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;

- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;

-готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

- умение использовать средства информационных и коммуникационных технологий (далее — ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

- владение языковыми средствами — умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;

- владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Предметные:

Базовый уровень

Предметные результаты освоения интегрированного курса математики ориентированы на формирование целостных представлений о мире и общей культуры обучающихся путём освоения систематических научных знаний и способов действий на метапредметной основе, а предметные результаты освоения курса математики на базовом уровне ориентированы на обеспечение преимущественно общеобразовательной и общекультурной подготовки. Они предполагают:

сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;

сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;

сформированность понятийного аппарата по основным разделам курса математики; знаний основных теорем, формул и умения их применять; умения доказывать теоремы.

владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;

владение стандартными приёмами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;

сформированность представлений об основных понятиях, идеях и методах математического анализа;

сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей;

сформированность умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;

владение навыками использования готовых компьютерных программ при решении задач.

владение геометрической терминологией, ключевыми понятиями, методами и приёмами;

владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах;

сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры;

применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;

Профильный уровень

Предметные результаты освоения курса математики на углублённом уровне ориентированы преимущественно на подготовку к последующему профессиональному образованию, развитие индивидуальных способностей обучающихся путём более глубокого, чем это предусматривается базовым курсом, освоения основ наук, систематических знаний и способов действий, присущих данному учебному предмету.

Профильный уровень математики включает, кроме перечисленных ниже результатов освоения углублённого курса, и результатов освоения базового курса, данные ранее:

сформированность представлений о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений;

сформированность понятийного аппарата по основным разделам курса математики; знаний основных теорем, формул и умения их применять; умения доказывать теоремы и находить нестандартные способы решения задач;

сформированность умений моделировать реальные ситуации, исследовать построенные модели, интерпретировать полученный результат;

сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;

владение умениями составления вероятностных моделей по условию задачи и вычисления вероятности наступления событий, в том числе с применением формул комбинаторики и основных теорем теории вероятностей; исследования случайных величин по их распределению.

сформированность навыков участия в различных формах организации учебно-исследовательской и проектной деятельности (творческие конкурсы, научные общества, научно-практические конференции, олимпиады, национальные образовательные программы и другие формы)

понимание возможности аксиоматического построения математических теорий;

к осознанному выбору дальнейшего образования и профессиональной деятельности.

СОДЕРЖАНИЕ КУРСА

Раздел

Базовый уровень

Профильный уровень

Алгебра

Многочлены от одной переменной и их корни. Разложение многочлена с целыми коэффициентами на множители. Комплексные числа и их геометрическая интерпретация. Арифметические действия над комплексными числами: сложение, вычитание, умножение, деление. Основная теорема алгебры (без доказательства).

Многочлены от одной переменной и их корни.

Теоремы о рациональных корнях многочленов с целыми коэффициентами. Комплексные числа и их геометрическая интерпретация.

Тригонометрическая форма комплексного числа. Арифметические действия над комплексными числами: сложение, вычитание, умножение, деление. Формула Муавра. Возведение в целую степень, извлечение натурального корня. Основная теорема алгебры (без доказательства).

Математический анализ.

Основные свойства функции: монотонность, промежутки возрастания и убывания, точки максимума и минимума, ограниченность функций, чётность и нечётность, периодичность. Элементарные функции: корень степени n, степенная, показательная, логарифмическая, тригонометрические функции. Свойства и графики элементарных функций.

Тригонометрические формулы приведения, сложения, двойного угла. Простейшие преобразования выражений, содержащих степенные, тригонометрические, логарифмические и показательные функции. Решение соответствующих простейших уравнений. Решение простейших показательных и логарифмических неравенств. Понятие о композиции функций. Понятие об обратной функции. Преобразования графиков функций: параллельный перенос, растяжение (сжатие) вдоль оси ординат. Понятие о непрерывности функции. Промежутки знакопостоянства непрерывной функции. Метод интервалов. Понятие о пределе последовательности. Сумма бесконечно убывающей геометрической прогрессии. Понятие о производной функции в точке. Физический и геометрический смысл производной. Производные основных элементарных функций, производная функции вида y=f(kx + b). Использование производной при исследовании функций, построении графиков (простейшие случаи). Использование свойств функций при решении текстовых, физических и геометрических задач. Решение задач на экстремум, нахождение наибольшего и наименьшего значений. Понятие об определённом интеграле как площади криволинейной трапеции.Формула Ньютона–Лейбница. Первообразная. Приложения определённого интеграла

Основные свойства функции: монотонность, промежутки возрастания и убывания, точки максимума и минимума, ограниченность функций, чётность и нечётность, периодичность. Элементарные функции: многочлен, корень степени n, степенная, показательная, логарифмическая, тригонометрические функции. Свойства и графики элементарных функций.

Преобразования графиков функций: параллельный перенос, растяжение (сжатие) вдоль осей координат, отражение от осей координат, от начала координат, графики функций с модулями. Тригонометрические формулы приведения, сложения, преобразования произведения в сумму, формула вспомогательного аргумента. Преобразование выражений, содержащих степенные, тригонометрические, логарифмические и показательные функции. Решение соответствующих уравнений, неравенств и их систем. Непрерывность функции. Промежутки знакопостоянства непрерывной функции. Метод интервалов. Композиция функций. Обратная функция. Понятие предела последовательности. Понятие предела функции в точке. Сумма бесконечно убывающей геометрической прогрессии. Метод математической индукции. Понятие о производной функции в точке. Физический и геометрический смысл производной. Производные основных элементарных функций, производная сложной функции, производная обратной функции. Использование производной при исследовании функций, построении графиков. Использование свойств функций при решении текстовых, физических и геометрических задач. Решение задач на экстремум, на нахождение наибольшего и наименьшего значений. Понятие об определённом интеграле как площади криволинейной трапеции.Формула Ньютона–Лейбница. Первообразная. Приложения определённого интеграла.

Вероятность и статистика.

Выборки, сочетания. Биномиальные коэффициенты. Бином Ньютона. Треугольник Паскаля и его свойства.

Определение и примеры испытаний Бернулли. Формула для вероятности числа успехов в серии испытаний Бернулли. Математическое ожидание числа успехов в испытании Бернулли. Основные примеры случайных величин. Математическое ожидание случайной величины. Независимость случайных величин и событий. Представление о законе больших чисел для последовательности независимых испытаний. Естественно-научные применения закона больших чисел

Выборки, сочетания. Биномиальные коэффициенты. Бином Ньютона. Треугольник Паскаля и его свойства. Определение и примеры испытаний Бернулли. Формула для вероятности числа успехов в серии испытаний Бернулли. Математическое ожидание и дисперсия числа успехов в испытании Бернулли. Основные примеры случайных величин. Математическое ожидание и дисперсия случайной величины. Независимые случайные величины и события. Представление о законе больших чисел для последовательности независимых испытаний. Естественно-научные применения закона больших чисел. Оценка вероятностных характеристик (математического ожидания, дисперсии) случайных величин по статистическим данным.

Представление о геометрической вероятности. Решение

простейших прикладных задач на геометрические вероятности

Геометрия

Решение задач с применением свойств фигур на плоскости, решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактах, связанных с 4хугольниками; фактов, связанных с окружностями; на измерение плоскости, вычисление длин и площадей. Решение задач с помощью векторов и координат. Наглядная геометрия: фигуры и их изображения. Взаимное расположение прямых и плоскостей в пространстве. Проекция фигуры на плоскость. Многогранники. Теорема Пифагора в пространстве. Тела вращения, изображение тел вращения на плоскости. Простейшие комбинации многогранников и тел вращения между собой. Вычисление элементов пространственных фигур. Понятие об объеме. Объем пирамиды и конуса, призмы и цилиндра, шара. Подобные тела в пространстве. Соотношение между площадями поверхностей и объемами подобных тел. Движение в пространстве, свойства движений, применение движений при решении задач. Векторы и координаты в пространстве. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объёмов. Уравнение плоскости в пространстве.

Углы и отрезки, связанные с окружностью. Теорема Чевы и теорема Менелая. Эллипс, гипербола, парабола как геометрические места точек. Неразрешимость классических задач на построение. Прямые и плоскости в пространстве. Понятие об аксиоматическом способе построения геометрии. Площадь ортогональной проекции многоугольника. Центральное проектирование. Многогранники. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера. Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Тела и поверхности вращения. Осевые сечения и сечения параллельные основанию. Эллипс, гипербола, парабола как сечения конуса. Сфера, вписанная в многогранник, сфера, описанная около многогранника. Цилиндрические и конические поверхности. Касательные прямые и плоскости. Площади поверхностей многогранников. Понятие об объеме тела. Объемы многогранников и тел вращений. Подобие в пространстве. Преобразование подобия, гомотетия. Отношение объемов подобных тел. Комбинации многогранников и тел вращения. Координаты и векторы. Уравнения сферы и плоскости. Векторы и координаты в пространстве. Применение векторов при решении задач и доказательств теорем.Формула расстояния от точки до плоскости.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА

АЛГЕБРЫ И НАЧАЛ АНАЛИЗА В 10-11 КЛАССАХ.

Базовый уровень

Профильный уровень

Раздел

I.Выпускник научится

III. Выпускник получит возможность научиться

II.Выпускник научится

IV. Выпускник получит возможность научиться

Требования к результатам

Элементы теории множеств и математической логики

Оперировать на базовом уровне понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал;

оп оперировать на базовом уровне понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;

на находить пересечение и объединение двух множеств, представленных графически на числовой прямой;

ст строить на числовой прямой подмножество числового множества, заданное простейшими условиями;

ра распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров.

В повседневной жизни и при изучении других предметов:

использовать числовые множества на координатной прямой для описания реальных процессов и явлений;

проводить логические рассуждения в ситуациях повседневной жизни

Оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;проверять принадлежность элемента множеству;находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;

проводить доказательные рассуждения для обоснования истинности утверждений.

В повседневной жизни и при изучении других предметов:

использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов

Свободно оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение, объединение и разность множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;задавать множества перечислением и характеристическим свойством;

оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;проверять принадлежность элемента множеству;находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;

проводить доказательные рассуждения для обоснования истинности утверждений.

В повседневной жизни и при изучении других предметов:

использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов

Достижение результатов раздела II;

оперировать понятием определения, основными видами определений, основными видами теорем;

понимать суть косвенного доказательства;

оперировать понятиями счетного и несчетного множества; применять метод математической индукции для проведения рассуждений и доказательств и при решении задач. В повседневной жизни и при изучении других предметов:

использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа и выражения

Оперировать на базовом уровне понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб; оперировать на базовом уровне понятиями: логарифм числа, тригонометрическая окружность, градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину;

выполнять арифметические действия с целыми и рациональными числами;

выполнять несложные преобразования числовых выражений, содержащих степени чисел, либо корни из чисел, либо логарифмы чисел; сравнивать рациональные числа между собой; оценивать и сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях;

изображать точками на числовой прямой целые и рациональные числа;

изображать точками на числовой прямой целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях;

выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;

выражать в простейших случаях из равенства одну переменную через другие;

вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

изображать схематически угол, величина которого выражена в градусах;

оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов.

В повседневной жизни и при изучении других учебных предметов:

выполнять вычисления при решении задач практического характера;

выполнять практические расчеты с использованием при необходимости справочных материалов и вычислительных устройств;

соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;

использовать методы округления, приближения и прикидки при решении практических задач повседневной жизни

Свободно оперировать понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;

приводить примеры чисел с заданными свойствами делимости;

оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числае и π; выполнять арифметические действия, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства;

находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства;

пользоваться оценкой и прикидкой при практических расчетах;

проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические функции;

находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

изображать схематически угол, величина которого выражена в градусах или радианах;

использовать при решении задач табличные значения тригонометрических функций углов;

выполнять перевод величины угла из радианной меры в градусную и обратно.

В повседневной жизни и при изучении других учебных предметов:

выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные устройства;

оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира

Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

переводить числа из одной системы записи (системы счисления) в другую;

доказывать и использовать признаки делимости суммы и произведения при выполнении вычислений и решении задач;

выполнять округление рациональных и иррациональных чисел с заданной точностью;

сравнивать действительные числа разными способами;

упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2

находить НОД и НОК разными способами и использовать их при решении задач;

выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;

выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений.

В повседневной жизни и при изучении других предметов:

выполнять и объяснять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения; составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов

Достижение результатов раздела II;

свободно оперировать числовыми множествами при решении задач;

понимать причины и основные идеи расширения числовых множеств;

владеть основными понятиями теории делимости при решении стандартных задач

иметь базовые представления о множестве комплексных чисел;

свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;

владеть формулой бинома Ньютона;

применять при решении задач теорему о линейном представлении НОД;

применять при решении задач Китайскую теорему об остатках;

применять при решении задач Малую теорему Ферма;

уметь выполнять запись числа в позиционной системе счисления;

применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера;

применять при решении задач цепные дроби;

применять при решении задачмногочлены с действительными и целыми коэффициентами;

владеть понятиями приводимый и неприводимый многочлен и применять их при решении задач;

применять при решении задач Основную теорему алгебры;

применять при решении задач простейшие функции комплексной переменной как геометрические преобразования

Уравнения и неравенства

Решать линейные уравнения и неравенства, квадратные уравнения;

решать логарифмические уравнения вида loga (bx + c) = d и простейшие неравенства вида logax <d;

решать показательные уравнения, вида abx+c=d (где d можно представить в виде степени с основанием a) и простейшие неравенства вида ax<d (где d можно представить в виде степени с основанием a);.

приводить несколько примеров корней простейшего тригонометрического уравнения вида: sin x = a,cosx = a,tgx = a,ctgx = a,гдеa – табличное значение соответствующей тригонометрической функции.

В повседневной жизни и при изучении других предметов:

составлять и решать уравнения и системы уравнений при решении несложных практических задач

Решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;

использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;

использовать метод интервалов для решения неравенств; использовать графический метод для приближенного решения уравнений и неравенств;

изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;

выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.

В повседневной жизни и при изучении других учебных предметов:

составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;

использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;

уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи

Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3-й и 4-й степеней, дробно-рациональные и иррациональные;

овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;

применять теорему Безу к решению уравнений;

применять теорему Виета для решения некоторых уравнений степени выше второй;

понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

решать алгебраические уравнения и неравенства, их системы с параметрами алгебраическим и графическим методами;владеть разными методами доказательства неравенств;решать уравнения в целых числах;изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами;

свободно использовать тождественные преобразования при решении уравнений и систем уравнений

В повседневной жизни и при изучении других предметов:

составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;

использовать программные средства при решении отдельных классов уравнений и неравенств

Достижение результатов раздела II;

свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;

свободно решать системы линейных уравнений;

решать основные типы уравнений и неравенств с параметрами;

применять при решении задач неравенства Коши — Буняковского, Бернулли;

иметь представление о неравенствах между средними степенными

Функции

Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период;

оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;

распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций;

соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций с формулами, которыми они заданы;

находить по графику приближённо значения функции в заданных точках;

определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);

строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).

В повседневной жизни и при изучении других предметов:

определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.);

интерпретировать свойства в контексте конкретной практической ситуации

Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции;оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;определять значение функции по значению аргумента при различных способах задания функции; строить графики изученных функций;

описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения; строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов,асимптоты, нули функции и т.д.);

решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.

В повседневной жизни и при изучении других учебных предметов:

определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);

интерпретировать свойства в контексте конкретной практической ситуации;

определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач; владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач;

владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач; владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач; владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач; владеть понятием обратная функция; применять это понятие при решении задач; применять при решении задач свойства функций: четность, периодичность,ограниченность;

применять при решении задач преобразования графиков функций; владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия;

применять при решении задач свойства и признаки арифметической и геометрической прогрессий.

В повседневной жизни и при изучении других учебных предметов:

определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.);

интерпретировать свойства в контексте конкретной практической ситуации;.

определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Достижение результатов раздела II;

владеть понятием асимптоты и уметь его применять при решении задач;

применять методы решения простейших дифференциальных уравнений первого и второго порядков

Элементы математического анализа

Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции;

определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;

решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой.

В повседневной жизни и при изучении других предметов:

пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;

соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);

использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса

Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;

вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;

вычислять производные элементарных функций и их комбинаций, используя справочные материалы;

исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.

В повседневной жизни и при изучении других учебных предметов:

решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.;

интерпретировать полученные результаты

Владеть понятием бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;

применять для решения задач теорию пределов; владеть понятиями бесконечно большие и бесконечно малые числовые последовательности и уметь сравнивать бесконечно большие и бесконечно малые последовательности;

владеть понятиями: производная функции в точке, производная функции;

вычислять производные элементарных функций и их комбинаций; исследовать функции на монотонность и экстремумы;

строить графики и применять к решению задач, в том числе с параметром;владеть понятием касательная к графику функции и уметь применять его при решении задач;владеть понятиями первообразная функция, определенный интеграл; применять теорему Ньютона–Лейбница и ее следствия для решения задач.

В повседневной жизни и при изучении других учебных предметов:

решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов;

интерпретировать полученные результаты

Достижение результатов раздела II;

свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;

свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;оперировать понятием первообразной функции для решения задач;

овладеть основными сведениями об интеграле Ньютона–Лейбница и его простейших применениях;

оперировать в стандартных ситуациях производными высших порядков;

уметь применять при решении задач свойства непрерывных функций;уметь применять при решении задач теоремы Вейерштрасса; уметь выполнять приближенные вычисления (методы решения уравнений, вычисления определенного интеграла);

уметь применять приложение производной и определенного интеграла к решению задач естествознания;

владеть понятиями вторая производная, выпуклость графика функции и уметь исследовать функцию на выпуклость

Статистика и теория вероятностей, логика и комбинаторика

Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;

оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;

вычислять вероятности событий на основе подсчета числа исходов.

В повседневной жизни и при изучении других предметов:

оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;

читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков

Иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин; иметь представление о математическом ожидании и дисперсии случайных величин;иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;

понимать суть закона больших чисел и выборочного метода измерения вероятностей;

иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;иметь представление о важных частных видах распределений и применять их в решении задач;

иметь представление о корреляции случайных величин, о линейной регрессии.

В повседневной жизни и при изучении других предметов:

вычислять или оценивать вероятности событий в реальной жизни;

выбирать подходящие методы представления и обработки данных;

уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях

Оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность и выборкой из нее;оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов;

владеть основными понятиями комбинаторики и уметь их применять при решении задач;

иметь представление об основах теории вероятностей;

иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;иметь представление о математическом ожидании и дисперсии случайных величин;

иметь представление о совместных распределениях случайных величин;

понимать суть закона больших чисел и выборочного метода измерения вероятностей;

иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;иметь представление о корреляции случайных величин.

В повседневной жизни и при изучении других предметов:

вычислять или оценивать вероятности событий в реальной жизни;

выбирать методы подходящего представления и обработки данных

Достижение результатов раздела II;

иметь представление о центральной предельной теореме; иметь представление о выборочном коэффициенте корреляции и линейной регрессии; иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и ее уровне значимости;

иметь представление о связи эмпирических и теоретических распределений;

иметь представление о кодировании, двоичной записи, двоичном дереве; владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач; иметь представление о деревьях и уметь применять при решении задач; владеть понятием связность и уметь применять компоненты связности при решении задач; уметь осуществлять пути по ребрам, обходы ребер и вершин графа;

иметь представление об эйлеровом и гамильтоновом пути, иметь представление о трудности задачи нахождения гамильтонова пути;

владеть понятиями конечные и счетные множества и уметь их применять при решении задач;уметь применять метод математической индукции;

уметь применять принцип Дирихле при решении задач

Текстовые задачи

Решать несложные текстовые задачи разных типов;

анализировать условие задачи, при необходимости строить для ее решения математическую модель; понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;

действовать по алгоритму, содержащемуся в условии задачи;использовать логические рассуждения при решении задачи;работать с избыточными условиями, выбирая из всей информации, данные, необходимые для решения задачи;осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;

анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;

решать задачи на расчет стоимости покупок, услуг, поездок и т.п.;

решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;

решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;

решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временнóй оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.;

использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п.

В повседневной жизни и при изучении других предметов:

решать несложные практические задачи, возникающие в ситуациях повседневной жизни

Решать задачи разных типов, в том числе задачи повышенной трудности;

выбирать оптимальный метод решения задачи, рассматривая различные методы;строить модель решения задачи, проводить доказательные рассуждения;

решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;

анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту;

переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы;

В повседневной жизни и при изучении других предметов:

решать практические задачи и задачи из других предметов

Решать разные задачи повышенной трудности;

анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;

строить модель решения задачи, проводить доказательные рассуждения при решении задачи;решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;

анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;

переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.

В повседневной жизни и при изучении других предметов:

решать практические задачи и задачи из других предметов

Достижение результатов раздела II

Геометрия

Оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей; распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);

изображать изучаемые фигуры от руки и с применением простых чертежных инструментов;

делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу;

извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;

применять теорему Пифагора при вычислении элементов стереометрических фигур;

находить объемы и площади поверхностей простейших многогранников с применением формул;

распознавать основные виды тел вращения (конус, цилиндр, сфера и шар);

находить объемы и площади поверхностей простейших многогранников и тел вращения с применением формул.

В повседневной жизни и при изучении других предметов:

соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;

использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания;

соотносить площади поверхностей тел одинаковой формы различного размера;

соотносить объемы сосудов одинаковой формы различного размера;

оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников)

Оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;

применять для решения задач геометрические факты, если условия применения заданы в явной форме; решать задачи на нахождение геометрических величин по образцам или алгоритмам; делать (выносные) плоские чертежи из рисунков объемных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников; извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения; описывать взаимное расположение прямых и плоскостей в пространстве;

формулировать свойства и признаки фигур;

доказывать геометрические утверждения;

владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);

находить объемы и площади поверхностей геометрических тел с применением формул;

вычислять расстояния и углы в пространстве.

В повседневной жизни и при изучении других предметов:

использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний

владеть геометрическими понятиями при решении задач и проведении математических рассуждений;самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям;

исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;

решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;уметь формулировать и доказывать геометрические утверждения;владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр;

иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач;

уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов;

иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними;

применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач;уметь применять параллельное проектирование для изображения фигур;уметь применять перпендикулярности прямой и плоскости при решении задач;

владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач;владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач;владеть понятием угол между прямой и плоскостью и уметь применять его при решении задач;

владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач;владеть понятиями призма, параллелепипед и применять свойства параллелепипеда при решении задач;владеть понятием прямоугольный параллелепипед и применять его при решении задач;

владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач;иметь представление о теореме Эйлера,правильных многогранниках;

владеть понятием площади поверхностей многогранников и уметь применять его при решении задач;владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач;

владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач;иметь представления о вписанных и описанных сферах и уметь применять их при решении задач;владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач;иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач;иметь представление о площади сферы и уметь применять его при решении задач;

уметь решать задачи на комбинации многогранников и тел вращения;иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур.

В повседневной жизни и при изучении других предметов:

составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат

Иметь представление об аксиоматическом методе;

владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач;уметь применять для решения задач свойства плоских и двугранных углов, трехгранного угла, теоремы косинусов и синусов для трехгранного угла;владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач;иметь представление о двойственности правильных многогранников;

владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций;иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника;

иметь представление о конических сечениях;

иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач;

применять при решении задач формулу расстояния от точки до плоскости;

владеть разными способами задания прямой уравнениями и уметь применять при решении задач;

применять при решении задач и доказательстве теорем векторный метод и метод координат;

иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач;

применять теоремы об отношениях объемов при решении задач;

применять интеграл для вычисления объемов и поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя;

иметь представление о движениях в пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач;иметь представление о площади ортогональной проекции;иметь представление о трехгранном и многогранном угле и применять свойства плоских углов многогранного угла при решении задач;

иметь представления о преобразовании подобия, гомотетии и уметь применять их при решении задач;

уметь решать задачи на плоскости методами стереометрии;

уметь применять формулы объемов при решении задач

Векторы и координаты в пространстве

Оперировать на базовом уровне понятием декартовы координаты в пространстве;

находить координаты вершин куба и прямоугольного параллелепипеда

Оперировать понятиями декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные векторы;

находить расстояние между двумя точками, сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам;

задавать плоскость уравнением в декартовой системе координат;

решать простейшие задачи введением векторного базиса

Владеть понятиями векторы и их координаты;уметь выполнять операции над векторами;использовать скалярное произведение векторов при решении задач;

применять уравнение плоскости, формулу расстояния между точками, уравнение сферы при решении задач;

применять векторы и метод координат в пространстве при решении задач

Достижение результатов раздела II;

находить объем параллелепипеда и тетраэдра, заданных координатами своих вершин;задавать прямую в пространстве;находить расстояние от точки до плоскости в системе координат;находить расстояние между скрещивающимися прямыми, заданными в системе координат

История математики

Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;

понимать роль математики в развитии России

Представлять вклад выдающихся математиков в развитие математики и иных научных областей;

понимать роль математики в развитии России

Иметь представление о вкладе выдающихся математиков в развитие науки;

понимать роль математики в развитии России

Достижение результатов раздела II

Методы математики

Применять известные методы при решении стандартных математических задач;

замечать и характеризовать математические закономерности в окружающей действительности;

приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства

Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

применять основные методы решения математических задач;

на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач

Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;применять основные методы решения математических задач;

на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;

применять простейшие программные средства и электронно-коммуникационные системы при решении мат.задач;

пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов

Достижение результатов раздела II;

применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики)

Тематическое планирование по алгебре

п/п

Тема

Кол-во

часов

база

Кол-во

часов

профиль

Основные виды учебной деятельности

Примечание

10 класс

Действительные числа

Понятие действительного числа. Свойства действительных чисел. Множества чисел и операции над множествами чисел. Доказательство неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.

Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач.

9

12

самостоятельная работа №1

самостоятельная работа №8

самостоятельная работа №9

Рациональные уравнения и неравенства

Рациональные выражения. Формулы бинома Ньютона,суммы и разности степеней. Рациональные уравнения. Системы рациональныхуравнений. Метод интервалов решения неравенств. Рацио­нальные неравенства. Нестрогие неравенства. Системы ра­циональных неравенств.

Основная цель — сформировать умения решать ра­циональные уравнения и неравенства.Повторяются старые и приводятся новые способы решения ра­циональных уравнений и систем рациональных уравнений.

Рациональные выражения. Формула бинома Ньютона, свойства биноминальных коэффициентов, треугольник Паскаля, формулы разности и суммы степеней. Многочлены от одной переменной. Деление многочленов. Деление многочленов с остатком. Рациональные корни многочленов с целыми коэффициентами. Решение целых алгебраических уравнений. Схема Горнера. Теорема Безу. Число корней многочлена. Рациональные уравнения и неравенства, системы рациональных неравенств

14

18

самостоятельная работа №2

самостоятельная работа №4

самостоятельная работа №5

самостоятельная работа №12

самостоятельная работа №13

Контрольная работа №1

Корень степени n

Понятия функции и ее графика. Функция у=х".Поня­тие корня степени п.Корни четной и нечетной степеней. Арифметический корень. Свойства корней степени п.

Основная цель — освоить понятия корня степенипи арифметического корня; выработать умение преобразо­вывать выражения, содержащие корни степенип.

При изучении этой темы сначала напоминаются опреде­ления функции и ее графика, свойства функцииу = хп.Су­ществование двух корней четной степени из положительного числа и одного корня нечетной степени из любого действи­тельного числа показывается геометрически с опорой на не­прерывность на Rфункцииу - х". Основное внимание уде­ляется изучению свойств арифметических корней и их при­менению к преобразованию выражений, содержащих корни. Понятие функции, ее области определения и множества значений. Функция y = xn, где n N, ее свойства и график. Понятие корня степени n>1 и его свойства, понятие арифметического корня.

7

12

самостоятельная работа №16

самостоятельная работа №17

Контрольная работа №2

Степень положительного числа

Понятие и свойства степени с рациональным показате­лем. Предел последовательности. Бес­конечно убывающая геометрическая прогрессия. Число е.Понятие степени с иррациональным показателем. Показа­тельная функция.

Основная цель — усвоить понятия рациональнойи иррациональной степеней положительного числа и пока­зательной функции.

Сначала вводятся понятие рациональной степени поло­жительного числа и изучаются ее свойства. Затем вводится понятие предела последовательности и с его помощью на­ходится сумма бесконечно убывающей геометрической прогрессии и определяется число е.Степень с иррацио­нальным показателем определяется с использованием пре­дела последовательности, после чего вводится показатель­ная функция и изучаются ее свойства и график. Понятие степени с рациональным показателем, свойства степени с рациональным показателем. Понятие о пределе последовательности. Теоремы о пределах последовательностей. Существование предела монотонной и ограниченной. Ряды, бесконечная геометрическая прогрессия и ее сумма. Число e. Понятие степени с иррациональным показателем. Преобразование выражений, содержащих возведение в степень. Показательная функция, ее свойства и график.

10

13

самостоятельная работа №18

самостоятельная работа №19

Контрольная работа №3

Логарифмы

Понятие и свойства логарифмов. Логарифмическая функция.

Основная цель — освоить понятия логарифма и ло­гарифмической функции, выработать умение преобразовы­вать выражения, содержащие логарифмы.

Сначала вводятся понятия логарифма, десятичного и на­турального логарифмов, изучаются свойства логарифмов. Затем рассматривается логарифмическая функция и изуча­ются ее свойства и график. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени, переход к новому основанию. Десятичный и натуральный логарифмы. Преобразование выражений, содержащих логарифмы. Логарифмическая функция, ее свойства и график.

6

6

самостоятельная работа №20

тест

Показательные и логарифмические уравнения и неравенства

Простейшие показательные и логарифмические уравне­ния. Уравнения, сводящиеся к простейшим заменой неиз­вестного. Простейшие показательные и логарифмическиенеравенства. Неравенства, сводящиеся к простейшим заме­ной неизвестного.

Основная цель — сформировать умение решать по­казательные и логарифмические уравнения и неравенства.

Сначала изучаются простейшие показательные уравне­ния, находятся их решения. Затем аналогично изучаются простейшие логарифмические уравнения. Далее рассматри­ваются уравнения, решение которых (после введения ново­го неизвестного tи решения получившегося рационального уравнения относительно t)сводится к решению простейше­го показательного (или логарифмического) уравнения.

По такой же схеме изучаются неравенства: сначала про­стейшие показательные, затем простейшие логарифмиче­ские, и наконец, неравенства, сводящиеся к простейшимзаменой неизвестного.

10

11

самостоятельная работа №21

самостоятельная работа №22

тест

Контрольная работа №4

Синус, косинус угла

Понятие угла и его меры. Определение синуса и косину­са угла, основные формулы для них. Арксинус и аркко­синус.

Основная цель — освоить понятия синуса и коси­нуса произвольного угла, изучить свойства функций угла: sinа и cosа.

Используя язык механики, вводится понятие угла как результата поворота вектора. Затем вводятся его градусная и радианная меры. С использованием единичной окружно­сти вводятся понятия синуса и косинуса угла. Изучаются свойства функций sinα и cosα как функций угла α, дока­зываются основные формулы для них.Вводятся понятия арксинуса и арккосинуса числа и с их помощью решаются задачи на нахождение всех углов, для каждого из которых sinα (или cosα) равен (больше или меньше) некоторого числа. Радианная мера угла. Синус, косинус, тангенс и котангенс произвольного угла и действительного числа. Основное тригонометрическое тождество для синуса и косинуса. Понятия арксинуса, арккосинуса.

7

7

самостоятельная работа №24

самостоятельная работа №26

самостоятельная работа №28

Тангенс и котангенс угла

Определения тангенса и котангенса угла и основные формулы для них. Арктангенс и арккотангенс

Основная цель — освоить понятия тангенса и котангенса произвольного угла, изучить свойства функций угла: tgα и ctgα.

Тангенс и котангенс угла определяются как с помощью отношений sinα и cosα, так и с помощью осей тангенса и котангенса. Изучаются свойства функций tgα и ctgα как функций угла α, доказываются основные формулы для них.

Вводятся понятия арктангенса и арккотангенса числа и с их помощью решаются задачи на нахождение всех углов, для каждого из которых tgα (или ctga) равен (больше или меньше) некоторого числа. Тангенс и котангенс угла и числа. Основные тригонометрические тождества для тангенса и котангенса. Понятие арктангенса и арккотангенса.

7

6

самостоятельная работа №29

самостоятельная работа №30

Контрольная работа №5

Формулы сложения

Косинус суммы (и разности) двух углов. Формулы для дополнительных углов. Синус суммы (и разности) двухуглов. Сумма и разность синусов и косинусов. Формулы для двойных и половинных углов. Произведение синусов и косинусов. Формулы для тангенсов.

Основная цель — освоить формулы косинуса и си­нуса суммы и разности двух углов, выработать умение вы­полнять тождественные преобразования тригонометриче­ских выражений с использованием выведенных формул.

Сначала с помощью скалярного произведения векторов доказывается формула косинуса разности двух углов. Затем с помощью свойств синуса и косинуса угла и доказанной формулы выводятся все перечисленные формулы. Исполь­зуя доказанные формулы, выводятся формулы для синусов и косинусов двойных и половинных углов, а также для про­изведения синусов и косинусов углов.

Синус, косинус и тангенс суммы и разности двух аргументов. Формулы приведения. Синус и косинус двойного аргумента.Формулы половинного аргумента. Преобразование суммы тригонометрических функций в произведения и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование тригонометрических выражений.

7

11

самостоятельная работа №32

самостоятельная работа №34

самостоятельная работа №37

Тригонометрические функции числового аргумента

Тригонометрические функции, их свойства и графики,

периодичность, основной период. Функцииу=sinx,у=cosх:,у = tgx, у = ctgx.

Основная цель — изучить свойства основных три­гонометрических функций и их графиков.

Сначала говорится о том, что хотя функция может вы­ражать зависимость между разными физическими величи­нами, но в математике принято рассматривать функции у — f(x)как функции числа. Поэтому здесь и рассматрива­ются тригонометрические функции числового аргумента, их основные свойства. С использованием свойств тригоно­метрических функций строятся их графики.

При изучении этой темы вводится понятие периодиче­ской функции и ее главного периода, доказывается, что главный период функций у=sinx и у=cosx есть число 2л, а главный период функций у = tgxиу=ctgx есть число л.

6

9

самостоятельная работа №38

Контрольная работа №6

Тригонометрические уравнения и неравенства

Решение простейших тригонометрических уравнений и неравенств. Основные способы решения уравнений. Решение тригонометрических неравенств.Простейшие тригонометрические уравнения. Тригоно­метрические уравнения, сводящиеся к простейшим заменой неизвестного. Применение основных тригонометрическихформул для решения уравнений. Однородные уравнения. Простейшие тригонометрические неравенства. Введение вспомогательного угла.

Основная цель — сформировать умение решатьтригонометрические уравнения и неравенства.

Сначала с опорой на умение решать задачи на нахожде­ние всех углов х таких, что f(x)=а,гдеf(x)— одна из основных тригонометрических функций (sinx,cosx,tgx,ctgx), рассматривается решение простейших тригономет­рических уравнений. Затем рассматриваются уравнения,которые (после введения нового неизвестногоtи решения получившегося рационального уравнения относительноt)сводятся к решению простейшего тригонометрического уравнения. Рассматриваются способы решения тригоно­метрических уравнений с помощью основных тригономет­рических формул и, наконец, рассматриваются однород­ные тригонометрические уравнения.

6

12

самостоятельная работа №39

самостоятельная работа №40

самостоятельная работа №41

самостоятельная работа №42

Контрольная работа №7

Элементы теории вероятностей

Понятие и свойства вероятности события.

Основная цель — овладеть классическим понятиемвероятности события, изучить его свойства и научиться применять их при решении несложных задач. Сначала рассматриваются опыты, результаты которых называют событиями. Определяется вероятность события.Рассматриваются примеры вычисления вероятности события. Затем вводятся понятия объединения (суммы), пересечения (произведения) событий и рассматриваются примеры на применение этих понятий.

Табличное и графическое представление данных. Числовые характеристики рядов данных.Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события.

4

8

самостоятельная работа №

Итоговое повторение

Текстовые задачи. Текстовые задачи на проценты. Графические модели реальных ситуаций. Алгебраические модели реальных ситуаций. Задачи на движение. Задачи на работу.

Алгебраические выражения. Решение уравнений (иррациональных, показательных, логарифмических). Задачи на оптимизацию. Неравенства. Тригонометрические уравнения и неравенства.

9

11

Контрольная работа №8

11 класс

Функции и их графики

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума.

7

9

самостоятельная работа №3

самостоятельная работа №4

самостоятельная работа №6

самостоятельная работа №7

Предел функции и непрерывность

Числовые последовательности и их свойства. Предел последовательности Числовые последовательности и их свойства. Предел последовательности. Свойства пределов функции. Понятие непрерывности функции. Непрерывность элементарных функций.

5

5

самостоятельная работа №8

самостоятельная работа №10

Обратные функции

Сложная функция (композиция функций). Взаимно обратные функции. Область определения и область значений обратной функции. График обратной функции. Нахождение функции, обратной данной. Обратные тригонометрические функции, их свойства и графики.

3

6

самостоятельная работа №11

Контрольная работа № 1

Производная

Понятие о производной функции, физический и геометрический смысл производной.Уравнение касательной к графику функции. Производные суммы, разности, произведения и частного. Производные основных элементарных функций.Производные сложной и обратной функций. Вторая производная.

8

11

самостоятельная работа №12

самостоятельная работа №13

самостоятельная работа №14

Контрольная работа № 2

Применение производной

Применение производной к исследованию функций и построению графиков. Использование производных при решении уравнений и неравенств, при решении текстовых, физических и геометрических задач, нахождении наибольших и наименьших значений. Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Нахождение скорости для процесса, заданного формулой или графиком. Вторая производная и ее физический смысл

15

16

самостоятельная работа №15

самостоятельная работа №16

самостоятельная работа №18

самостоятельная работа №19

самостоятельная работа №22

Контрольная работа № 3

Первообразная и интеграл

Площадь криволинейной трапеции. Понятие об определенном интеграле.Первообразная. Первообразные элементарных функций. Правила вычисления первообразных. Формула Ньютона-Лейбница. Примеры применения интеграла в физике и геометрии.

10

13

самостоятельная работа №24

самостоятельная работа №27

самостоятельная работа №28

Контрольная работа № 4

Равносильность уравнении и неравенств

Равносильные преобразования уравнений. Равносильность уравнений. Равносильные преобразования неравенств. Равносильные преобразования неравенств. Понятие уравнения – следствия. Возведение уравнения в чётную степень. Возведение уравнения в чётную степень. Возведение уравнения в чётную степень. Потенцирование логарифмических уравнений. Общие методы решения уравнений.

4

4

самостоятельная работа №30

Уравнения – следствия

Различные преобразования, приводящие к уравнению-следствию. Применение нескольких преобразований, приводящих к уравнению – следствию.

5

8

самостоятельная работа №31

самостоятельная работа №32

Равносильность уравнений и неравенств системам

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение иррациональных неравенств.Решение систем уравнений с двумя неизвестными простейших типов. Решение систем неравенств с одной переменной. Доказательства неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов.

8

13

самостоятельная работа №33

самостоятельная работа №34

самостоятельная работа №37

Равносильность уравнений на множествах

Основные понятия, возведение уравнений в четную степень. Умножение уравнения на функцию, применение нескольких преобразований, уравнения с дополнительными условиями.

5

7

самостоятельная работа №39

Контрольная работа № 5

Равносильность неравенств на множествах

Основные понятия равносильности неравенств на множествах. Возведение неравенств в чётную степень. Умножение неравенства на функцию, применение нескольких преобразований.Нестрогие неравенства.

6

7

самостоятельная работа №41

самостоятельная работа №42

Метод промежутков для уравнений и неравенств

Уравнения с модулями. Неравенства с модулями. Метод интервалов для непрерывных функций.

-

5

самостоятельная работа №43

Контрольная работа № 6*

Использование свойств функций при решении уравнений и неравенств

Использование областей существования функции. Использование ограниченности функции Использование монотонности и экстремумов функции Использование свойств синуса и косинуса..

-

5

самостоятельная работа №46

Системы уравнений с несколькими неизвестными

Равносильность систем. Система- следствие. Метод замены неизвестных. Рассуждения с числовыми выражениями при решений уравнений и неравенств

6

8

самостоятельная работа №48

Контрольная работа № 7*

Итоговое повторение

Текстовые задачи. Графические модели реальных ситуаций. Алгебраические выражения. Решение уравнений (иррациональных, показательных, логарифмических). Геометрический смысл производной. Физический смысл производной. Неравенства. Задачи на движение Системы уравнений с двумя переменными.

12

19

Контрольная работа № 8

Тематическое планирование по геометрии

п/п

Тема

Кол-во

часов

база

Кол-во

часов

профиль

Основные виды учебной деятельности

10 класс

Углы и отрезки, связанные с окружностью

Решение задач с использованием фактов, связанных с окружностями, четырехугольниками.

4*

4

Решение треугольников

Решение задач с использованием теорем о треугольниках, соотношения в прямоугольных треугольниках, вычисление длин и площадей.

5*

4

Теорема Менелая и Чевы

Решение задач с использованием теорем Менелая и Чевы.

3*

2

Эллипс, гипербола, парабола

-

2

Предмет стереометрии.

Предмет стереометрии. Аксиомы стереометрии. Некоторые свойства из аксиом. Решение задач на применение аксиом стереометрии и их следствий. Аксиомы о взаимном расположении точек, прямых и плоскостей в пространстве и их следствия.

Основная цель Сформировать представления учащихся об основных понятиях и аксиомах стереометрии, их использовании при решении задач.

3

3

Параллельность прямых, прямой и плоскости

Параллельные прямые в пространстве, параллельность трех прямых, параллельность прямой и плоскости.

4

4

Самостоятельная работа №1

Взаимное расположение прямых в пространстве. Угол между прямыми.

Три случая взаимного расположения двух прямых в пространстве, признаки скрещивающихся прямых. Углы с сонаправленными сторонами, угол между прямыми.

4

4

Контрольная работа №1 (20 мин)

Параллельность плоскостей

Параллельные плоскости, их свойства.

2

2

Тетраэдр, параллелепипед

Тетрадь, параллелепипед, задачи на построение сечений.

6

6

Самостоятельная работа №2

Контрольная работа №2

Перпендикулярность прямых и плоскостей.

Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости. Признак перпендикулярности прямой и плоскости. Теорема о прямой, перпендикулярной плоскости. Решение задач на перпендикулярность прямой и плоскости.

5

5

Самостоятельная работа №3

Перпендикуляр и наклонная. Угол между прямой и плоскостью Расстояние от точки до плоскости. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Повторение теории. Решение задач на применение теоремы о трех перпендикулярах. Угол между прямой и плоскостью.

6

6

Самостоятельная работа №4

Двугранный угол. Перпендикулярность плоскостей.

Двугранный угол. Признак перпендикулярности двух плоскостей. Прямоугольный параллелепипед. Решение задач на свойства прямоугольного параллелепипеда. Повторение теории и решении задач по теме «Перпендикулярность прямых и плоскостей».

6

6

Самостоятельная работа №5

Контрольная работа №3

Понятия многогранника. Призма Понятие многогранника. Призма. Основная цель Дать учащимся систематические сведения об основных видах многогранников. Изучить многогранники на наглядной основе, опираясь на объекты природы, предметы окружающей действительности.

Понятие многогранника. Призма. Площадь поверхности призмы. Повторение теории, решение задач на вычисление площади поверхности призмы.

3

3

Самостоятельная работа №6

Пирамида.

Пирамида. Правильная пирамида. Решение задач по теме пирамида. Усеченная пирамида. Площадь поверхности усеченной пирамиды.

3

4

Самостоятельная работа №7

Правильные многогранники.

Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильных многогранников. Пять видов правильных многогранников. Увидеть симметрию в пространстве. Различать виды правильных многогранников. Работать с чертежом и читать его.

6

7

Самостоятельная работа №8

Контрольная работа №4

Повторение

Аксиомы стереометрии. Параллельность прямых и плоскостей. Теорема о трех перпендикулярах, угол между прямой и плоскостью. Основные теоретические факты. Наиболее распространенные приемы решения задач. Совершенствовать умения и навыки решения задач.

8

6

Самостоятельная работа №9

11 класс

Понятие вектора в пространстве

Понятие вектора в пространстве. Равенство векторов.

Основная цель Обобщить изученный материал в базовой школе материало векторах на плоскости, дать систематические сведения о действиях с векторами в пространстве.

1

1

Сложение и вычитание векторов. Умножение вектора на число.

Свойства сложения и вычитания векторов, правило треугольника, правило параллелограмма и правило многоугольника сложения векторов. Решать задачи, связанные с действиями над векторами.

2

2

Компланарные вектора

Компланарные векторы, правило параллелепипеда, разложение вектора по трём некомпланарным векторам, применять векторы при решении геометрических задач.

3

3

Самостоятельная работа №1

Координаты точки и координаты вектора

Координаты точки и координаты вектора.

Основная цель Сформировать умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве.

Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами векторов и координат точек. Простейшие задачи в координатах.Уравнение сферы.

5

3

Самостоятельная работа №2

Скалярное произведение векторов

Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями.

6

8

Самостоятельная работа №3

Движения

Движения. Центральная симметрия. Зеркальная симметрия. Осевая симметрия. Параллельный перенос. Применение движение при решении задач.

4

4

Самостоятельная работа №4

Контрольная работа №1

Цилиндр

Цилиндр.

Основная цель Дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шар) завершает изучение системы основных пространственных геометрических тел. Познакомить с понятиями описанных и вписанных призм и пирамид.

Понятие цилиндра. Цилиндр. Понятие цилиндрической поверхности, цилиндра и его элементов. Формулы для вычисления площадей боковой и полной поверхности цилиндра. Решать задачи на нахождение элементов цилиндра, площади поверхности цилиндра. Работать с рисунком, читать его.

3

3

Самостоятельная работа №5

Конус

Конус. Усеченный конус. Понятие конической поверхности, конуса, усеченного конуса. Формулы для вычисления боковой и полной поверхности усеченного конуса.

5

5

Самостоятельная работа №6

Сфера

Сфера . Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы. Понятие сферы, шара и их элементов. Уравнение сферы. Возможные случаи расположение сферы и плоскости. Формулу площади сферы. Понятие вписанного шара (сферы) в многогранник, описанного шара (сферы) около многогранника, условия их существования. Работать с чертежом и читать его, решать задачи по данной теме и на комбинацию: сферы и пирамиды, цилиндра и призмы, призмы и сферы, конуса и пирамиды. Применять полученные знания при изучении темы при решении задач.

7

8

Самостоятельная работа №7

Контрольная работа №2

Объем прямоугольного параллелепипеда

Понятие объема. Объем прямоугольного параллелепипеда. Основная цельПродолжить систематическое изучение многогранников и тел вращения входе решения задач на вычисление их объемов.

Понятие объема тел. Свойства объемов, прямоугольного параллелепипеда. Формула объема прямоугольного параллелепипеда. Использовать свойства объемов тел при решении задач.

2

2

Объем прямой призмы и цилиндра

Свойства объемов прямой призмы, основанием которой является прямоугольный треугольник. прямоугольной призмы. Использовать свойства объемов тел при решении задач.

3

3

Самостоятельная работа №8

Объем наклонной призмы, пирамиды и конуса

Возможность и целесообразность применения определенного интеграла для вычисления объемов тел. Формула объема наклонной призмы. Формула объема пирамиды, у которой вершина проецируется в центр вписанной или описанной около основания окружности. Формулу объема усеченной пирамиды. Формула объемов конуса и усеченного конуса. Находить объем наклонной призмы. Вывести формулу объема наклонной призмы с помощью интеграла, формулу объема пирамиды с использованием основной формулы объемов тел, формулу объема конуса с помощью определенного интеграла. Находить объемы наклонной призмы, пирамиды, усеченной пирамиды, конуса и усеченного конуса. Применять формулы при решении задач.

4

6

Самостоятельная работа №9

Объем шара и площадь сферы

Формула нахождения объема шара. Формулы для вычисления объемов частей шара. Формула для вычисления площади поверхности шара. Применение формул при решении задач. Работать с чертежами и читать их. Выводить формулу для вычисления объема шара. Находить объем шарового сегмента, шарового слоя, сектора. Выводить формулу для вычисления площади поверхности шара. Применять формулы при решении задач.

6

6

Самостоятельная работа №10

Контрольная работа №3

Итоговое повторение курса геометрии

Аксиомы стереометрии. Параллельность прямых, параллельность прямой и плоскости. Скрещивающиеся прямые. Параллельность плоскостей. Перпендикулярность прямой и плоскости. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Двухгранный угол. Перпендикулярность плоскостей. Многогранники: параллелепипед, призма, пирамида, площади их поверхностей. Векторы в пространстве. Действия над векторами. Скалярное произведение векторов. Цилиндр, конус и шар, площади их поверхностей. Объемы тел. Комбинация с описанными сферами.

17

14

Самостоятельная работа №11 Самостоятельная работа №12

Итого:

68

68

Нормы оценки знаний, умений и навыков обучающихся.

Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок;

в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

Оценка устных ответов обучающихся.

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником

изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

отвечал самостоятельно, без наводящих вопросов учителя;

возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);

имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя

ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях

не раскрыто основное содержание учебного материала;

обнаружено незнание учеником большей или наиболее важной части учебного материала;

допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу

Общая классификация ошибок.

При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

незнание наименований единиц измерения;

неумение выделить в ответе главное;

неумение применять знания, алгоритмы для решения задач;

неумение делать выводы и обобщения;

неумение читать и строить графики;

неумение пользоваться первоисточниками, учебником и справочниками;

потеря корня или сохранение постороннего корня;

отбрасывание без объяснений одного из них;

равнозначные им ошибки;

вычислительные ошибки, если они не являются опиской;

логические ошибки.

К негрубым ошибкам следует отнести

неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

неточность графика;

нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

нерациональные методы работы со справочной и другой литературой;

неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

нерациональные приемы вычислений и преобразований;

небрежное выполнение записей, чертежей, схем, графиков.

Учебно-методический комплекс для учителя:

С.М. Никольский, М.К. Потапов,  и другие «Алгебра и начала математического  анализа, 10 класс», базовый и углублённый уровни. Просвещение, 2017г.

С.М. Никольский, М.К. Потапов,  и другие «Алгебра и начала математического  анализа, 11 класс», Просвещение, 2017г.

М.К. Потапов, А.В. Шевкин «Алгебра и начала математического  анализа, 10 класс» – дидактические материалы, Просвещение, 2011г.

М.К. Потапов, А.В. Шевкин «Алгебра и начала математического  анализа, 11 класс» – дидактические материалы, Просвещение, 2011г.  

П.И Алтынов. Тесты. Алгебра 10-11 классы. Дрофа 2002.

Атанасян Л.С., Бутузов В.Ф. «Геометрия, 10-11», Дрофа,  2001г.

Б.Г. Зив «Дидактические материалы по геометрии 10 класс». Просвещение 2004.

Б.Г. Зив «Дидактические материалы по геометрии 11класс». Просвещение 2004.

П.И Алтынов. Тесты. Геометрия. 10-11 классы.Дрофа 2002.

С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 10-11 классах. Книга для учителя. Москва. Просвещение.2013

Учебно-методический комплекс для обучающихся:

С.М. Никольский, М.К. Потапов, и другие «Алгебра и начала математического  анализа, 10 класс», базовый и углублённй уровни. Просвещение,  2017г.

С.М. Никольский, М.К. Потапов, и другие «Алгебра и начала математического  анализа, 11 класс», Просвещение,  2017г.

Атанасян Л.С., Бутузов В.Ф. «Геометрия, 10-11», Дрофа,  2001г.

Сборники КИМов  ЕГЭ.

Решу ЕГЭ. Образовательный портал для подготовки к экзаменам [Электронный ресурс].- Режим доступа:http//www.phys.reshuege.ru/ -свободный.

Единая коллекция цифровых образовательных ресурсов [Электронный ресурс].- Режим доступа:http//school-collection.edu.ru/- свободный.

Дополнительная литература

«Математика. Подготовка к ЕГЭ-2018: учебно-методическое пособие». Под редакцией Ф.Ф.Лысенко, С.Ю. Кулабухова.

ЕГЭ 2017. Математика: Сборник тренировочных работ/под. Ред. А.Л. Семёнова и И.В. Ященко.- М.: АСТ: Астрель, 2017.- 93с.

В.А. Яровенко Поурочные разработки по геометрии. Дифференцированный подход, 10 класс. Москва. «ВАКО». 2016

Е.М. Рабинович Математика. Задачи на готовых чертежах. Геометрия. 10-11 классы. Москва. ИЛЕКСА. 2010

А.П. Ершова, В.В. Голобородько. Математика. Устные проверочные и зачётные работы. Устная геометрия. 10-11 классы. Москва. ИЛЕКСА. 2012

Ю.А.Глазков, Л.И Гоженкова «Тесты по геометрии». Москва, ЭКЗАМЕН, 2012.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/342100-rabochaja-programma-po-matematike-1011bazov

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки