Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
22.11.2020

Рабочая программа по алгебре для 7 класса

Балашова Кристина Вячеславовна
учитель физики и математики
Данная рабочая программа обеспечивает формирование личностных, метапредметных и предметных результатов.

Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Программа разработана на 3 ч в неделю (35 недель).

Содержимое разработки

Муниципальное бюджетное общеобразовательное учреждение

«Дятьковская средняя общеобразовательная школа №3»

Дятьковского района Брянской области

«Рассмотрено на МО и рекомендовано к утверждению»

Руководитель ШМО

­­­­­­­­________ Дёмина Л.И.

Протокол № ___ от

«__» __________ 2020 г.

«Утверждаю»

Директор

_______ Ромашков Д.В.

Приказ № ___ от

«__» _________ 2020 г.

РАБОЧАЯ ПРОГРАММА

по алгебре

для 7 «а» класса

на 2020-2021 учебный год

Составитель:

Балашова К.В.

г. Дятьково

2020 год

Планируемые результаты освоения учебного предмета

Данная рабочая программа обеспечивает формирование личностных, метапредметных и предметных результатов.

Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Рабочая программа позволяет добиваться следующих результатов освоения образовательной программы основного общего об­разования:

личностные:

1) ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

2) формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

3) умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

4) первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

5) критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

6) креативности мышления, инициативы, находчивости, активности при решении арифметических задач;

7) умения контролировать процесс и результат учебной математической деятельности;

8) формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

1) способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

2) умения осуществлять контроль по образцу и вносить необходимые коррективы;

3) способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

4) умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

5) умения создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;

6) развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

7) формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

8) первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;

9) развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;

10) умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

11) умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

12) умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

13) понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;

14) умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

15) способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные:

1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, ис-пользовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;

2) владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;

3) умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

4) умения пользоваться изученными математическими формулами;

5) знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;

6) умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

Планируемые результаты приводятся к каждому разделу учебной программы. Они описывают примерный круг учебно-познавательных и учебно-практических задач, который предъявляется обучающимся в ходе изучения каждого раздела программы.

В результате изучения алгебры, ученик должен:

Уметь

составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

выполнять основные действия со степенями с натуральными показателями и с многочленами; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

решать линейные уравнения, системы двух линейных уравнений и несложные нелинейные системы;

решать линейные неравенства с одной переменной и их системы;

решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

изображать числа точками на координатной прямой;

определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

описывать свойства изученных функций, строить их графики;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

интерпретации графиков реальных зависимостей между величинами.

Содержание учебного предмета, курса

1. Выражения, тождества, уравнения

Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.

Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки и дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том, же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах = b при различных значениях а и b. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Изучение темы завершается ознакомлением учащихся с простейшими статистическими характеристиками: средним арифметическими, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.

2. Функции

Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.

Основная цель - ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.

Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у = kх, где k0, как зависит от значений k и b взаимное расположение графиков двух функций вида у = kх + b

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

3. Степень с натуральным показателем

Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.

Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.

В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств аm • аn = аm+n , аm : аn = аm-n где m > n, (аm)п = аmn, (аb)п = аnbn учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций у = х2, у = х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание учащихся на особенности графика функции у = х2 : график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций у = х2 и у = х3 используется для ознакомления учащихся с графическим способом решения уравнений.

4. Многочлены

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

Основная цель — выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами - сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

5. Формулы сокращенного умножения

Формулы (а ± b)2 = а2 ± 2аb + b2, (а ± b)3 = а3 ± 3а2Ь + Заb2 ± b3, (а ± b) (а2  аb + b2) = а3 ± b3. Применение формул сокращенного умножения в преобразованиях выражений.

Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b) (а + b) = а2 - Ь2, (а ± b)2 = а2 + 2аb + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

Наряду с указанными рассматриваются также формулы (a ± b)3 = а3 ± За2b + Заb2 ± b3, а3 ± b3 = (а + b) (а2  аb + b2). Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

6. Системы линейных уравнений

Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

Основная цель - ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения а + bу = с, где а  0 или Ь  0, при различных значениях а, b, с. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными.

Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

7.Повторение

Тематическое планирование

Наименование раздела (темы), ццццтема урока

Дата проведения

Количество часов

Примечание

по плану

фактически

Повторение - 3 час

1

Вводный инструктаж по ТБ проведен. Повторение по теме «Рациональные числа».

1

2

Повторение по теме «Решение задач».

1

3

Стартовый контроль.

1

Глава I. Выражения, тождества, уравнения 22 час

4

Числовые выражения.

1

5

Решение задач по теме «Числовые выражения».

1

6

Выражения с переменными.

1

7

Решение задач по теме «Выражения с переменными.

1

8

Сравнение значений выражений.

1

9

Свойства действий над числами.

1

10

Преобразование выражений.

1

11

Тождества.

1

12

Тождественные преобразования выражений.

1

13

Контрольная работа по теме «Числовые выражения. Выражения с переменными».

1

14

Уравнение и его корни.

1

15

Линейное уравнение с одной переменной.

1

16

Решение линейных уравнений с одной переменной.

1

17

Уравнения с одной переменной.

1

18

Решение задач с помощью уравнений.

1

19

Решение задач «на проценты» с помощью уравнений.

1

20

Решение задач «на движение» с помощью уравнений.

1

21

Среднее арифметическое, размах, мода.

1

22

Среднее арифметическое размах, мода.

1

23

Медиана как статистическая характеристика.

1

24

Решение задач по теме «Статистические характеристики».

1

25

Контрольная работа по теме «Уравнения с одной переменной. Статистические характеристики».

1

ГлаваII Функции 11 час

26

Что такое функция.

1

27

Вычисление значений функции по формуле.

1

28

Графики функций.

1

29

Графики функций.

1

30

График функции.

1

31

Линейная функция.

1

32

Прямая пропорциональность и её график.

1

33

Линейная функция и её график.

1

34

Решение задач «Линейная функция и её график».

1

35

Построение графиков линейных функций.

1

36

Контрольная работа «Линейная функция».

1

ГлаваIII. Степень с натуральным показателем 11 час

37

Определение степени с натуральным показателем.

1

38

Умножение степеней.

1

39

Деление степеней.

1

40

Возведение в степень произведения.

1

41

Возведение в степень степени.

1

42

Одночлен и его стандартный вид.

1

43

Умножение одночленов.

1

44

Возведение одночлена в степень.

1

45

Функция y=x² и её график.

1

46

Функция y=x³ и её график.

1

47

Контрольная работа за 1 полугодие.

1

ГлаваIV. Многочлены 17 час

48

Многочлен и его стандартный вид.

1

49

Сложение многочленов.

1

50

Вычитание многочленов.

1

51

Произведение одночлена и многочлена.

1

52

Умножение одночлена на многочлен.

1

53

Решение задач «Умножение одночлена на многочлен».

1

54

Вынесение общего множителя за скобки.

1

55

Решение задач «Вынесение общего множителя за скобки».

1

56

Решение задач по теме «Многочлены».

1

57

Контрольная работа «Многочлены. Произведение одночлена на многочлен».

1

58

Произведение многочленов.

1

59

Умножение многочлена на многочлен.

1

60

Решение задач «Умножение многочлена на многочлен».

1

61

Разложение многочлена на множители способом группировки.

1

62

Решение задач «Разложение многочлена на множители способом группировки.

1

63

Решение задач по теме «Произведение многочленов».

1

64

Контрольная работа по теме «Произведение многочленов».

1

ГлаваV. Формулы сокращённого умножения 19 час

65

Возведение в квадрат суммы двух выражений.

1

66

Возведение в квадрат разности двух выражений.

1

67

Разложение на множители с помощью формулы квадрата суммы.

1

68

Разложение на множители с помощью формулы квадрата разности.

1

69

Разложение на множители с помощью формул сокращённого умножения.

1

70

Умножение разности двух выражений на их сумму.

1

71

Решение задач «Умножение разности двух выражений на их сумму».

1

72

Разложение разности квадратов на множители.

1

73

Решение задач «Разложение разности квадратов на множители.

1

74

Разложение на множители суммы кубов.

1

75

Разложение на множители разности кубов.

1

76

Контрольная работа по теме «Формулы сокращенного умножения».

1

77

Преобразование целого выражения в многочлен.

1

78

Применение различных способов для разложения многочлена на множители.

1

79

Различные способы для разложения многочлена на множители.

1

80

Применение преобразований целых выражений.

1

81

Преобразование целых выражений.

1

82

Решение задач «Применение преобразований целых выражений».

1

83

Контрольная работа «Преобразование целых выражений».

1

ГлаваVI. Системы линейных уравнений 16 час

84

Линейное уравнение с двумя переменными.

1

85

График линейного уравнения с двумя переменными.

1

86

Решение задач «График линейного уравнения с двумя переменными».

1

87

Системы линейных уравнений с двумя переменными.

1

88

Решение задач «Системы линейных уравнений с двумя переменными».

1

89

Способ подстановки.

1

90

Способ подстановки при решении системы линейных уравнений.

1

91

Решение задач «Способ подстановки при решении системы линейных уравнений».

1

92

Способ сложения.

1

93

Способ сложения при решении системы линейных уравнений.

1

94

Решение задач «Способ сложения при решении системы линейных уравнений».

1

95

Решение задач с помощью систем уравнений.

1

96

Решение задач «на движение» с помощью систем уравнений.

1

97

Решение задач «на проценты» с помощью систем уравнений.

1

98

Решение систем уравнений различными способами.

1

99

Контрольная работа «Решение систем линейных уравнений».

1

Повторение - 6 час

100

Итоговая контрольная работа за курс 7 класса.

1

101

Итоговая контрольная работа за курс 7 класса.

1

102

Работа над ошибками.

1

103

Решение дополнительных упражнений к главамI-II.

1

104

Решение дополнительных упражнений к главам III-IV.

1

105

Решение дополнительных упражнений к главамV-VI.

1

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/429653-rabochaja-programma-po-algebre-dlja-7-klassa

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки