Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
02.11.2021

Методика оценивания выполнения олимпиадных заданий по математике ( 7- 11 классы)

Для единообразия проверки работ Участников в разных муниципальных образованиях необходимо включение в варианты заданий не только ответов и решений заданий, но и критериев оценивания работ.
Наилучшим образом зарекомендовала себя на математических олимпиадах 7-балльная шкала, действующая на всех математических соревнованиях от начального уровня до Международной математической олимпиады. Каждая задача оценивается целым числом баллов от 0 до 7. Итог подводится по сумме баллов, набранных Участником.

Содержимое разработки

Методика оценивания выполнения олимпиадных заданий

по математике ( 7- 11 классы)

Для единообразия проверки работ Участников в разных муниципальных образованиях необходимо включение в варианты заданий не только ответов и решений заданий, но и критериев оценивания работ. Для повышения качества проверки возможна организация централизованной проверки региональным жюри. Такая организация проверки рекомендуется для регионов с невысокой плотностью населения. Для повышения качества проверки обязательным является требование двух независимых проверок каждого решения.

Наилучшим образом зарекомендовала себя на математических олимпиадах 7-балльная шкала, действующая на всех математических соревнованиях от начального уровня до Международной математической олимпиады. Каждая задача оценивается целым числом баллов от 0 до 7. Итог подводится по сумме баллов, набранных Участником.

Баллы

Правильность (ошибочность) решения

7

Полное верное решение.

6-7

Верное решение. Имеются небольшие недочеты, в целом не влияющие на решение.

5-6

Решение содержит незначительные ошибки, пробелы в обоснованиях, но в целом верно и может стать полностью правильным после небольших исправлений или дополнений.

4

Верно рассмотрен один из двух (более сложный) существенных случаев.

2-3

Доказаны вспомогательные утверждения, помогающие в решении задачи.

1

Рассмотрены отдельные важные случаи при отсутствии решения (или при ошибочном решении).

0

Решение неверное, продвижения отсутствуют.

0

Решение отсутствует

Помимо этого жюри муниципального этапа следует проинформировать о том, что:

а) любое правильное решение оценивается в 7 баллов. Недопустимо снятие баллов за то, что решение слишком длинное, или за то, что решение школьника отличается от приведенного в методических разработках или от других решений, известных жюри; при проверке работы важно вникнуть в логику рассуждений участника, оценивается степень ее правильности и полноты;

б) олимпиадная работа не является контрольной работой участника, поэтому любые исправления в работе, в том числе зачеркивание ранее написанного текста, не являются основанием для снятия баллов; недопустимо снятие баллов в работе за неаккуратность записи решений при ее выполнении;

в) баллы не выставляются «за старание Участника», в том числе за запись в работе большого по объему текста, но не содержащего продвижений в решении задачи;

г) победителями олимпиады в одной параллели могут стать несколько участников, набравшие наибольшее количество баллов, поэтому не следует в обязательном порядке «разводить по местам» лучших участников олимпиады.

Тематика заданий муниципального этапа олимпиады

VII КЛАСС

Уравнения.

Уравнение с одной переменной. Корни уравнения. Линейное уравнение.

Функции.

Функция. График функции. Функции: у=kx,у=kx+b.

Текстовые задачи, сводящиеся к решению уравнений.

Представление о начальных понятиях геометрии, геометрических фигурах.

Равенство фигур.

Отрезок. Длина отрезка и ее свойства. Расстояние между точками. Угол. Виды углов. Смежные и вертикальные углы и свойства. Пересекающиеся и параллельные прямые. Перпендикулярные прямые. Треугольник и его элементы. Признаки равенства треугольников. Сумма углов треугольника. Представление о площади фигуры.

Специальные олимпиадные темы.

Числовые ребусы. Взвешивания.

Логические задачи. Истинные и ложные утверждения.

«Оценка + пример».

Построение примеров и контрпримеров.

Инвариант.

Принцип Дирихле.

Разрезания.

Раскраски.

Игры.

VIII-IХ КЛАССЫ

Числа и вычисления.

Натуральные числа и нуль. Десятичная система счисления. Арифметические действия с натуральными числами. Представление числа в десятичной системе. Делители и кратные числа. Простые и составные числа. Взаимно простые числа. Разложение числа на простые множители. Четность. Деление с остатком. Признаки делимости на 2k, 3, 5k, 6, 9, 11. Свойства факториала. Свойства простых делителей числа и его степеней.

Обыкновенные дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями. Десятичные дроби.

Отношения. Пропорции. Основное свойство пропорции. Прямая и обратная пропорциональность величин. Проценты. Положительные и отрицательные числа. Модуль числа. Сравнение положительных и отрицательных чисел. Арифметические действия с положительными и отрицательными числами, свойства арифметических действий. Целые числа. Рациональные числа. Понятие об иррациональном числе. Изображение чисел точками на координатной прямой. Числовые неравенства и их свойства. Операции с числовыми неравенствами. Квадратный корень.

Выражения и их преобразования.

Степень с натуральным показателем и ее свойства. Многочлены. Формулы сокращенного умножения. Разложение многочленов на множители. Теорема Безу. Квадратный трехчлен: выделение квадрата двучлена, разложение на множители. Арифметическая и геометрическая прогрессии.

Уравнения и неравенства.

Уравнение с одной переменной. Корни уравнения. Линейное уравнение. Квадратное уравнение. Формула корней квадратного уравнения. Теорема Виета. Решение рациональных уравнений. Уравнение с двумя переменными. Система уравнений. Решение системы двух линейных уравнений с двумя переменными. Решение простейших нелинейных систем. Графическая интерпретация решения систем уравнений с двумя переменными. Неравенства. Линейные неравенства с одной переменной и их системы. Неравенства второй степени с одной переменной. Неравенства о средних. Текстовые задачи, сводящиеся к решению уравнений, неравенств, систем уравнений.

Функции.

Прямоугольная система координат на плоскости. Функция. Область определения и область значений функции. График функции. Возрастание функции, сохранение знака на промежутке.

Функции:у=kx,у=kx+b,y=k/x,у=х2,у=х3,у=ах2 + +с,у= |х|.

Преобразование графиков функций. Свойства квадратного трехчлена. Геометрические свойства графика квадратичной функции.

Планиметрия.

Треугольник и его элементы. Признаки равенства треугольников. Сумма углов треугольника. Подобие треугольников. Признаки подобия треугольников. Неравенство треугольника. Средняя линия треугольника и ее свойства. Соотношения между сторонами и углами треугольника. Свойства равнобедренного и равностороннего треугольников. Прямоугольный треугольник. Теорема Пифагора. Решение прямоугольных треугольников. Четырехугольники. Параллелограмм, его свойства и признаки. Прямоугольник, ромб, квадрат и их свойства. Трапеция. Средняя линия трапеции и ее свойства. Площади четырехугольников. Понятие о симметрии.Окружность и круг. Касательная к окружности и ее свойства. Центральные и вписанные углы. Окружность, описанная около треугольника. Окружность, вписанная в треугольник. Угол между касательной и хордой. Пропорциональные отрезки в окружности. Задачи на построение с помощью циркуля и линейки.

Вектор. Угол между векторами. Координаты вектора. Сложение векторов. Умножение вектора на число. Скалярное произведение векторов.

Специальные олимпиадные темы.

Логические задачи. Истинные и ложные утверждения.

«Оценка + пример».

Построение примеров и контрпримеров.

Принцип Дирихле. Разрезания. Раскраски. Игры. Инвариант. Элементы комбинаторики.

Диофантовы уравнения (уравнения в целых числах).

Х-ХI КЛАССЫ

Числа и вычисления.

Делимость. Простые и составные числа. Разложение числа на простые множители. Четность. Деление с остатком. Признаки делимости на 2k, 3, 5k, 6, 9, 11. Свойства факториала. Свойства простых делителей числа и его степеней. Взаимно простые числа. Целые числа. Рациональные числа. Иррациональные числа. Число .

Выражения и их преобразования.

Многочлены. Формулы сокращенного умножения. Разложение многочленов на множители. Теорема Безу.

Арифметическая и геометрическая прогрессии. Кореньn-й степени и его свойства. Свойства степени с рациональным показателем.

Тригонометрия.

Основные тригонометрические тождества. Формулы приведения. Преобразования тригонометрических выражений. Свойства тригонометрических функций: ограниченность, периодичность.

Уравнения и неравенства.

Уравнения с одной переменной. Квадратные уравнения. Теорема Виета. Иррациональные уравнения. Показательные и логарифмические уравнения, их системы. Тригонометрические уравнения. Неравенства с одной переменной. Решение неравенств методом интервалов. Показательные и логарифмические неравенства. Уравнения и неравенства, содержащие переменную под знаком модуля. Простейшие уравнения, неравенства и системы с параметрами.

Неравенства второй степени с одной переменной. Неравенства о средних. Системы уравнений.

Текстовые задачи, сводящиеся к решению уравнений, неравенств, систем уравнений.

Функции.

Числовые функции и их свойства: периодичность, четность и нечетность, экстремумы, наибольшее и наименьшее значения, промежутки знакопостоянства, ограниченность. Понятие об обратной функции. Свойство графиков взаимно обратных функций. Тригонометрические функции числового аргумента: синус, косинус, тангенс, котангенс. Свойства и графики тригонометрических функций. Показательная функция, ее свойства и график. Логарифмическая функция, ее свойства и график. Степенная функция, ее свойства и график. Производная, ее геометрический и механический смысл. Применение производной к исследованию функций, нахождению их наибольших и наименьших значений и построению графиков. Построение и преобразование графиков функций. Касательная и ее свойства.

Планиметрия и стереометрия.

Планиметрия.

Признаки равенства треугольников. Признаки подобия треугольников. Неравенство треугольника. Площадь треугольника. Многоугольники. Правильные многоугольники. Окружность. Касательная к окружности и ее свойства. Центральные и вписанные углы. Окружность, описанная около треугольника. Окружность, вписанная в треугольник.

Угол между касательной и хордой. Пропорциональные отрезки в окружности. Вектор. Свойства векторов.

Стереометрия.

Взаимное расположение прямых в пространстве.

Свойства параллельности и перпендикулярности прямых.

Взаимное расположение прямой и плоскости. Перпендикуляр и наклонная к плоскости. Свойства параллельности и перпендикулярности прямых и плоскостей. Теорема о трех перпендикулярах. Взаимное расположение двух плоскостей. Свойства параллельности и перпендикулярности плоскостей. Угол между прямыми. Угол между прямой и плоскостью. Двугранный и многогранный углы. Линейный угол двугранного угла. Параллелепипед. Пирамида. Призма. Декартовы координаты в пространстве. Расстояние между точками. Вектор в пространстве.

Специальные олимпиадные темы.

«Оценка + пример».

Построение примеров и контрпримеров.

Принцип Дирихле.

Раскраски.

Игры.

Метод математической индукции.

Геометрические свойства графиков функций.

Элементы комбинаторики.

Диофантовы уравнения (уравнения в целых числах).

Рекомендуемая литература для подготовки заданий муниципального этапа

Всероссийской математической олимпиады

Журналы:

«Квант», «Квантик», «Математика в школе», «Математика для школьников»

Книги и методические пособия:

Агаханов Н.Х., Подлипский О.К. Математика. Районные олимпиады. 6-11 класс. – М.: Просвещение, 2010.

Агаханов Н.Х., Богданов И.И., Кожевников П.А., Подлипский О.К., Терешин Д.А. Математика.

Всероссийские олимпиады. Выпуск 1. – М.: Просвещение, 2008.

Агаханов Н.Х., Подлипский О.К. Математика. Всероссийские олимпиады. Выпуск 2. – М.: Просвещение, 2009.

Агаханов Н.Х., Подлипский О.К., Рубанов И.С.Математика. Всероссийские олимпиады. Выпуск 3. – М.: Просвещение, 2011.

Агаханов Н.Х., Подлипский О.К., Рубанов И.С.Математика. Всероссийские олимпиады. Выпуск 4. – М.: Просвещение, 2013.

Адельшин А.В.,Кукина Е.Г.,Латыпов И.А. и др.Математическая олимпиада им. Г. П. Кукина. Омск, 2007-2009. – М.: МЦНМО, 2011.

Андреева А.Н. ,Барабанов А.И., Чернявский И.Я.Саратовские математические олимпиады.1950/51–1994/95. (2-e. исправленное и дополненное). – М.: МЦНМО, 2013.

Бабинская И.Л. Задачи математических олимпиад. М.: Наука, 1975.

Блинков А.Д., Горская Е.С., Гуровиц В.М. (сост.).Московские математические регаты. Часть1. 1998– 2006 – М.: МЦНМО, 2014.

Блинков А.Д. (сост.). Московские математические регаты. Часть 2. 2006– 2013 – М.: МЦНМО, 2014.

Генкин С.А., Итенберг И.В., Фомин Д.В. Ленинградские математические кружки. – Киров: Аса, 1994.

Горбачев Н.В. Сборник олимпиадных задач по математике (3-е изд., стереотип.). – М.: МЦНМО, 2013.

Гордин Р.К. Это должен знать каждый матшкольник (6-е издание, стереотипное). — М., МЦНМО, 2011.

Гордин Р.К. Геометрия. Планиметрия. 7–9 классы (5-е издание, стереотипное). — М., МЦНМО, 2012.

Канель-Белов А.Я., Ковальджи А.К. Как решают нестандартные задачи (8-е, стереотипное). — М., МЦНМО, 2014.

Кноп К.А. Взвешивания и алгоритмы: от головоломок к задачам (3-е, стереотипное). — М., МЦНМО, 2014.

Козлова Е. Г.. Сказки и подсказки (задачи для математического кружка) (7-е издание, стереотипное).— М., МЦНМО, 2013.

Кордемский Б.А. Математическая смекалка. – М., ГИФМЛ, 1958 — 576 с.

Раскина И. В, Шноль Д. Э. Логические задачи. – М.: МЦНМО, 2014.

Интернет-ресурс: http://www.problems.ru/

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/468008-metodika-ocenivanija-vypolnenija-olimpiadnyh-

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки