Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
26.08.2022

Решение арифметических задач как способ развития вариативного мышления на уроках математики

Под вариативностью мышления подразумевается способность человека находить разнообразные решения. Современный человек постоянно оказывается в ситуации выбора оптимального варианта решения проблемы. Успешнее это будет делать тот, кто умеет искать разнообразные варианты и выбирать среди большого числа решений наиболее рациональное.

Содержимое разработки

Решение арифметических задач как способ развития вариативного

мышления на уроках математики

Дубовицкая Наталия Викторовна

МАОУ «СОШ№27 с УИОП», учитель

г. Старый Оскол

В последнее время возросло количество детей, испытывающих трудности в обучении. В начальной школы немало учащихся, имеющих проблемы в обучении.  Несформированность таких важнейших психических процессов как память, внимание, восприятие, воображение и, особенно – мышление является причиной слабой успеваемости. Логическое мышление – это основа успешного формирования общеучебных умений и навыков, требуемых школьной программой, так ка содержит в себе такие операции как анализ, синтез, сравнение, обобщение.

Еще профессор А.А.Столяр утверждал, что логическое и практическое (жизненное) содержание в младшем школьном возрасте осваивается в единстве и не может быть отделено одно от другого. 
Решить проблему неуспеваемости можно через применение такой инновационной технологии как развитие вариативности мыслительной деятельности. 

Под вариативностью мышления подразумевается способность человека находить разнообразные решения. Современный человек постоянно оказывается в ситуации выбора оптимального варианта решения проблемы. Успешнее это будет делать тот, кто умеет искать разнообразные варианты и выбирать среди большого числа решений наиболее рациональное. 

В современном контексте общий подход к поиску способа решения задач становится общеучебным умением, то есть формируемым средствами разных предметов естественно-научного цикла. Учитель может помочь школьникам «увидеть» те задачи, которые решаются средствами русского языка на уроках информатики, технологии и других предметов естественно-научного цикла, а значит учить использовать для поиска их решения те же приемы или их модификацию с учетом конкретного предмета.

Таким образом, овладение младшими школьниками общим подходом к поиску способа решения задач разного вида как одним из общеучебных умений является одной из составляющих целей начального образования.

В настоящее время современные школьники стали более развиты и им требуются не просто задачи на вычисление, а задачи, требующие в своем решении участия логического мышления, а также задачи, наиболее приближенные к жизненным ситуациям.

Научить детей решать задачи - значит, научить их устанавливать связи между данными и искомым и в соответствии с этим выбирать, а затем и выполнять арифметические действия.

Центральным звеном в умении решать задачи, которым должны овладеть учащиеся, является усвоение связей между данными и искомым. От того, насколько хорошо усвоены учащимися эти связи, зависит их умение решать задачи. Учитывая это, в начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными. Группы таких задач будем называть задачами одного вида. Работа над задачами не должна сводиться к натаскиванию учащихся на решение задач сначала одного вида, затем другого и т. д. Главная ее цель - научить детей осознанно устанавливать определенные связи между данными и искомым в разных жизненных ситуациях, предусматривая постепенное их усложнение. Чтобы добиться этого, учитель должен предусмотреть в методике обучения решению задач каждого вида такие ступени:

1)подготовительную работу к решению задач;

2)ознакомление с решением задач;

3)закрепление умения решать задачи.

Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению ее на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.

Методика работы с каждым новым видом составных задач, согласно данному подходу, ведется также в соответствии с тремя ступенями: подготовительная, ознакомительная, закрепление. Процесс решения каждой составной задачи осуществляется поэтапно:

1.Ознакомление с содержанием задачи.

2.Поиск решения задачи.

3.Составление плана решения.

4.Запись решения и ответа.

5.Проверка решения задачи.

Сначала задачу читает учитель или кто-то из учеников (первое прочтение). Затем учащимся предлагается прочитать задачу про себя, так как не все могут сосредоточиться на ее содержании, когда один из учеников читает вслух (второе прочтение).

-Кто может повторить задачу? (Дети воспроизводят текст по памяти - третье прочтение).

-Выделите условие и вопрос задачи (четвертое прочтении). Фактически опять воспроизводится текст.

-Что нам известно? (пятое прочтение, ученики воспроизводит условие).

-Что неизвестно? (Воспроизводится вопрос.)

Как видно, действия школьников сводятся к тому, что они пять раз воспроизводят текст: сначала читают вслух, затем про себя, потом по частям (условие и вопрос), выделяют известное и неизвестное.

Результатом этой работы, должно явиться осознание текста, т.е. представление той ситуации, которая нашла в нем отражение. Но практика показывает, что многократное воспроизведение текст задачи не всегда эффективно для его осознания. Ученики читают задачу, воспроизводят ее, выделяют условие и вопрос, утвердительно отвечают на вопрос: «Понял ли ты задачу?», но самостоятельно приступить к ее решению не могут.

В этом случае учитель пытается помочь детям, дополняя фронтальную беседу выполнением краткой записи.

Используя такую запись, он организует целенаправленный поиск решения, применяя один из способов разбора задачи: синтетический или аналитический.

Используя при решении каждой задачи аналитический или синтетический способ разбора, учитель в конечном итоге добивается, что дети сами задают себе эти вопросы в определенной последовательности и выполняют рассуждения, связанные с решением задачи.

Основным методом обучения решению составных задач при этом подходе является показ способов решения определенных видов задач и значительная, порой изнурительная практика по овладению ими, т.е. используется объяснительно-иллюстративный и репродуктивный методы обучения. Поэтому многие учащиеся решают задачи лишь по образцу.

Цель другого подхода - научить детей выполнять семантический, логический и математический анализ текстовых задач, выявлять взаимосвязи между условием и вопросом, данными и искомыми и представлять эти связи в виде схематических и символических моделей.

Приступать к знакомству с текстовой задачей можно только после того, как у учащихся сформированы представления о смысле действия сложения и вычитания, их взаимосвязи, понятий «увеличить на…», «уменьшить на…», разностного сравнения, т. к. задача это новое для ребят математическое понятие, которое формировать без соответствующих базовых понятий невозможно.

Разнообразие методических приёмов, способствует формированию общих умений решать текстовые задачи, т. е. умению анализировать текст задачи, представлять его в виде схематической модели, умению осуществлять поиск пути решения, представлять текст в виде символической модели и проверять правильность решения.

Процесс решения задач (простых и составных) рассматривается как переход от словесной модели к модели математической или схематической. В основе осуществления этого перехода лежит семантический анализ текста. Естественно, учащиеся должны быть подготовлены к этой деятельности. Отсюда следует, что знакомству младших школьников с текстовой задачей должна предшествовать специальная работа по формированию математических понятий и отношений, которые они будут использовать при решении текстовых задач.

Чтобы научить ребёнка решать текстовые задачи, учитель должен в разумном сочетании использовать оба подхода. А всё многообразие методических рекомендаций, связанных с обучением младших школьников решению задач, целесообразно рассматривать преимущественно с точки зрения второго подхода.

Развитие учащихся во многом зависит от той деятельности, которую они выполняют в процессе обучения.

Если ученик получает готовую информацию, воспринимает ее, понимает, запоминает, а затем воспроизводит, то эту деятельность обычно называют репродуктивной. Основная цель такой деятельности - формирование у школьников знаний, умений, навыков, развитие внимания и памяти.

Психологи отмечают, что следствием такой деятельности является скованность мышления и стремление ребенка мыслить по готовым стереотипам. Такие особенности интеллектуальной деятельности связаны с показом образца действий и его закреплением в процессе выполнения однотипных заданий. В результате учащиеся усваивают только однотипные способы решения задач, успешно воспроизводят их, но не видят других вариантов решения, не могут их варьировать и преобразовывать.

Продуктивная деятельность связана с активной работой мышления и находит свое выражение в таких мыслительных операциях как анализ и синтез, сравнение, классификация, аналогия, обобщение. Эти мыслительные операции в психолого-педагогической литературе принято называть логическими приемами мышления или приемами умственных действий.

Включение этих операций в процесс усвоения математического содержания - одно из важных условий построения развивающего обучения.

Литература

  1. Белошистая А.В. Методический семинар: вопросы обучения решению задач // Начальная школа плюс до и после. – 2003. - № 4. – С. 13-22.

  2. Дроботенко Н.М. Нестандартный урок математики по теме «Решение задач разными способами. Закрепление».// Начальная школа. – 2005. – №1.

  3. Кожухов С.К., Кожухова С.А. О методической целесообразности решения задач разными способами. // Математика в школе. – 2010. - №3.

  4. Халидов М.М. Теория и практика обучения младших школьников решению математических задач // Начальная школа. – 2006. - № 9. – С. 54-60.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/503894-reshenie-arifmeticheskih-zadach-kak-sposob-ra

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки