- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- «Теоретические и практические аспекты работы с детьми с расстройствами аутистического спектра»
- «Использование системы альтернативной и дополнительной коммуникации в работе с детьми с ОВЗ»
- Курс-практикум «Профессиональная устойчивость и энергия педагога»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Конспект урока по теме: «Теорема Виета»
Астахова И.А. , учитель математики ТОГБОУ кадетская школа-интернат «Многопрофильный кадетский корпус», Г.Тамбов
Тема урока: «Теорема Виета»
Цели урока:Формирование устойчивых умений и навыков применения теоремы Виета и обратной к ней для решения некоторых классов задач: нахождение суммы и произведения корней квадратного уравнения, исследование знаков его корней, отыскание корней приведённого квадратного уравнения подбором, составление квадратного уравнения с заданными корнями и т. д. Показать учащимся преимущества использования вышеназванных теорем.
Тип урока: практикум.
Ход урока:
Оргмомент
Сообщение темы и целей урока, видов и форм работы. (Сегодня на уроке мы вспомним условия применения теоремы Виета, для решения каких задач она используется, упрощает ли решение квадратных уравнений и их проверку или удобнее действовать обычными способами: находить корни уравнения по изученным формулам, а проверку выполнять по определению корня уравнения).
Актуализация знаний и устные упражнения
Каковы условия применения теоремы Виета? (Теорема Виета применима к приведённому квадратному уравнению, имеющему корни). Сформулируйте теорему Виета. Для каких целей она используется? (Теорема Виета используется для нахождения суммы ипроизведения корней квадратного уравнения, для проверки правильности его решения, для исследования знаков корней квадратного уравнения). Сформулируйте теорему, обратную теореме Виета. Для чего она применяется? (Теорема, обратная теореме Виета, используется для составления квадратных уравненийй с заданными корнями и для решения приведенного квадратного уравнения методом подбора).
1.Найдите сумму и произведение корней уравнения, не решая его.
x2+6x-5=0 | 2x2-9x+5=0 | 3x2-14x-5=0 | |
x1+x2 | -6 | 9/2 | 14/3 |
x1x2 | -5 | 5/2 | -5/3 |
2.Можно ли утверждать, что оба корня уравнения x2-8x-9=0 положительны? (Нет, так как произведение корней отрицательно). Можно ли утверждать,что модуль отрицательного корня больше? (Нет, так как сумма корней положительна). Внесите изменение в уравнение так, чтобы модуль отрицательного корня был больше) (x2+8x-9=0).
Итак, как мы можем узнать, одинаковых ли знаков корни уравнения? (Если свободный член уравнения положительное число, то корни уравнения одинаковых знаков, если отрицательное –противоположных знаков). Если корни уравнения одинаковых знаков, как определить какой именно это знак? (В этом случае оба корня уравнения будут иметь знак, противоположный второму коэффициенту уравнения).
3.Если каждый корень приведенного квадратного уравнения увеличить вдвое ( втрое), как изменятся его коэффициенты? (Второй коэффициент увеличится в два (в три) раза, а свободный член - в четыре (в девять) раз.
4.Известен один из корней уравнений, найдите второй двумя способами: a)x2+6x-40=0,x1=-10; б) 13x2-11x+2=0,x1=5.
5.Найдите подбором корни приведенного квадратного уравнения:
x2+8x+7=0,
x2-7x+12=0,
x2+2x-15=0,
x2-2x-3=0.
Выполнение упражнений
1.Составить приведенное квадратное уравнение с заданными корнями. (Решение вносится в заранее записанную на доске таблицу. Учащиеся выходят к доске «по цепочке» и комментируют свое решение).
x1 | x2 | уравнение |
5 | -2 | x2-3x-10=0 |
-3 | -1 | x2+4x+3=0 |
3 | 1 | x2-4x+3=0 |
-2 | 5 | x2+3x-10=0 |
2.Один из корней уравнений равен –3.Найдите второй корень и коэффициент k:a)x2+kx+18=0, б) x2-5x+k=0(Двое учащихся работают за закрытой доской, на местах-работа в парах, затем следует фронтальная проверка решения).
3 .Составьте приведенное квадратное уравнение, зная один корень, а затем найдите второй корень. (Учащиеся работают на местах самостоятельно, а затем несколько решений выносится на доску, например: ( x1=5 ) ( 52+3*5-40=0) (x2+3x-40=0) ( x2=-8 ).
4.Составьте задачу по уравнению x2+2x-120=0. Можно предварительно уравнение преобразовать: x*(x-2)=120. (Выслушиваются задачи, одна из них решается у доски алгебраическим способом. Длина прямоугольника на 2 см. больше его длины. Найдите длины сторон прямоугольника, если его площадь равна 120 см2).
5.Решить уравнение y2+17y+60=0,выполнить проверку двумя способами: обычным и с использованием теоремы Виета и обратной к ней. (Двое учащихся работают у доски). Если сравним время, затраченное на решение и количество выполненных операций, то преимущество использования теоремы Виета и обратной к ней становится очевидным. Это становится особенно актуальным на уроках алгебры и геометри в старших классах, так как многие задачи сводятся к решению приведенного квадратного уравнения и необходимость решать такие уравнения возникаете несколько раз за урок.
6.В курсе школьной математики изучется теорема Виета для приведённого уравнения второй степени, т.е. когда в левой части уравнения стоит многочлен второй степени. Но теорема справедлива и для произвольного приведённого многочлена. Сколько корней может иметь уравнение второй (третьей, четвёртой) степени? (Уравнение второй (третьей, четвёртой) степени может иметь не более двух (трёх, четырёх) корней. Соотношение между корнями и коэффициентами уравнения выводится с использованием разложения многочлена, стоящего в левой части уравнения на множители. Проанализируйте следующие записи и найдите связь между корнями и коэффициентами приведённого уравнения четвёртой степени.
x2+px+q=(x-x1)(x-x2)=x2-x2x-x1x+x1x2=x2-(x1+x2)x+(x1x2),
x2+px+q=0,
p=-(x1+x2),
q=x1x2;
x3+px2+qx+r=0,
p=-(x1+x2+x3),
q=x1x2+x2x3+x1x3,
r=-x1x2x3 ;
x4+px3+qx2+rx+s=0,
p=-(x1+x2+x3+x4),
q=x1x2+x1x3+x1x4+x2x3+x2x4+x3x4,
r=-(x1x2x3+x1x2x4+x2x3x4),
s=x1x2x3x4).
Задание надом
1.Составить и решить задачу по уравнению (x-3)*(x-7)=21.
2. (необязательное задание) а) Составить уравнение третьей степени с корнями, равными 1, 2, -1.б) Составить уравнение четвёртой степени , два корня которого равны 2 и два равны –2.
Итоги урока
Чем занимались на уроке? Нужно ли уметь пользоваться прямой и обратной теоремами Виета и почему?Что понравилось на уроке, а что нет?
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/71826-konspekt-uroka-po-teme-teorema-vieta
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Организация обучения русскому родному языку и литературному чтению на родном языке в соответствии с ФГОС НОО»
- «Формы и методы методической работы, методическая продукция»
- «Основные аспекты профессиональной деятельности педагога-психолога»
- «Преподавание учебного курса «Шахматы» в общеобразовательной организации»
- «Заместитель директора по АХР: особенности управления административно-хозяйственной работой образовательной организации»
- «Содержание изменений, внесенных во ФГОС начального общего, основного общего и среднего общего образования»
- Педагогика и методическая работа в образовательной организации
- Педагогическое образование: теория и методика преподавания основ духовно-нравственной культуры народов России
- Основы менеджмента в образовательной организации
- Педагогика и методика преподавания географии
- Музыкальное развитие и воспитание в дошкольном образовании
- Содержание и организация профессиональной деятельности по присмотру и уходу за детьми

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.