Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
07.02.2016

Методическая разработка комбинированного занятия для преподавателя по теме «Многогранные углы. Многогранник»

Содержание
Методический лист 4
Формирование требований ФГОС при изучении темы 5
Выписка из тематического плана дисциплины «Математика:
алгебра и начала математического анализа; геометрия»
6
Актуальность изучения математики 7
Примерная хронокарта занятия 8
Блок информации по теме 11
План самостоятельной работы студентов 17
Приложение №1 18
Приложение №2 21
Приложение №3 23
Домашнее задание 25
Перечень оборудования и оснащения 25
Список использованных источников 26

Содержимое разработки

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ учреждение среднего профессионального образования новосибирской области «Барабинский медицинский колледж»

Цикловая методическая комиссия общих гуманитарных,

социально-экономических дисциплин

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

комбинированного занятия

для преподавателя

Дисциплина: Математика: алгебра и начала математического анализа; геометрия

Раздел 4 «Геометрия»

Тема 4. 1 «Многогранные углы. Многогранник»

для специальности 34.02.01 Сестринское дело

по программе базовой подготовки

курс 1

Барабинск, 2016 г

Рассмотрена на заседании

ЦМК ОГСЭД

Протокол № ___________

От ____________ 2016 г.

Председатель ЦМК

______________________

(Ф. И. О.)

______________________

(подпись)

Разработчик:

Преподаватель 1 квалификационной категории Вашурина Т. В.

Содержание

Методический лист

4

Формирование требований ФГОС при изучении темы

5

Выписка из тематического плана дисциплины «Математика:

алгебра и начала математического анализа; геометрия»

6

Актуальность изучения математики

7

Примерная хронокарта занятия

8

Блок информации по теме

11

План самостоятельной работы студентов

17

Приложение №1

18

Приложение №2

21

Приложение №3

23

Домашнее задание

25

Перечень оборудования и оснащения

25

Список использованных источников

26

Методический лист

Тема 4. 1 «Многогранные углы. Многогранник»

Вид занятия: комбинированный урок.

Методы обучения: объяснительно-иллюстративный с использованием информационных технологий (ЭОР, мультимедийная презентация), репродуктивный, метод дифференцированного обучения.

Уровень усвоения информации: первый (узнавание ранее изученных объектов, свойств) + второй (выполнение деятельности по образцу, инструкции или под руководством)

Образовательные цели: сформировать представления об основных понятиях пространственных геометрических фигурах, их основных свойствах; сформировать умения распознавать на чертежах, моделях и в реальном мире многогранные геометрические фигуры; способствовать формированию умения организовывать собственную деятельность, выбирать типовые методы и способы выполнения упражнений.

Воспитательные цели: развивать коммуникативные способности; создавать условия для развития скорости восприятия и переработки информации, культуры речи; формировать умение работать в коллективе и команде.

Развивающие цели: способствовать выработке навыков выполнения упражнений на построение многогранных углов и многогранников.

Формирование требований ФГОС при изучении темы

«Многогранные углы. Многогранник»

Результаты обучения:

владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры;

сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации.

Изучение темы 4.1 способствует формированию у обучающихся следующих общих компетенций:

ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения задач, оценивать их выполнение и качество.

ОК 6. Работать в коллективе и команде.

Выписка из тематического плана

дисциплины «Математика: алгебра и начала математического анализа; геометрия»

специальность Сестринское дело

Тема 4.1

Многогранные углы. Многогранник

Содержание учебного материала

2

Формирование умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры. История возникновения и развития геометрии. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Распознание на чертежах и моделях пространственные формы

Лабораторная работа

-

Практическое занятие

-

Контрольная работа

-

Самостоятельная работа обучающихся:

- работа с учебником, выполнение упражнений [3, с.60-62 , с.67 зад. 218];

- работа с конспектом лекции.

1

Актуальность изучения геометрии

     Великий французский архитектор Корбюзье как-то воскликнул: «Все вокруг геометрия!». Сегодня уже в начале XXI столетия мы можем повторить это восклицание с еще большим изумлением. В самом деле, посмотрите вокруг — всюду геометрия! Современные здания и космические станции, авиалайнеры и подводные лодки, интерьеры квартир и бытовая техника – все имеет геометрическую форму. Геометрические знания являются сегодня профессионально значимыми для многих современных специальностей: для дизайнеров и конструкторов, для рабочих и ученых. И уже этого достаточно, чтобы ответить на вопрос: «Нужна ли  нам Геометрия?»

     Во-первых, геометрия является первичным видом интеллектуальной деятельности, как для всего человечества, так и для отдельного человека. Мировая наука начиналась с геометрии. Ребенок, еще не научившийся говорить, познает геометрические свойства окружающего мира. Многие достижения древних геометров (Архимед, Аполлоний) вызывают изумление у современных ученых, и это несмотря на то, что у них полностью отсутствовал алгебраический аппарат.

     Во-вторых, геометрия является одной составляющей общечеловеческой культуры. Некоторые теоремы геометрии являются одними из древнейших памятников мировой культуры. Человек не может по-настоящему развиться культурно и духовно, если он не изучал геометрию; геометрия возникла не только из практических, но и из духовных потребностей человека.

     Основой курса геометрии является принцип доказательности всех утверждений. И это единственный предмет, включая даже предметы математического цикла, полностью основанный на последовательном выводе всех утверждений. Людьми, понимающими, что такое доказательство, трудно и даже невозможно манипулировать.

     Итак, Геометрия — один из важнейших предметов, причем не только среди предметов математического цикла, но и вообще среди всех изучаемых предметов. Ее целевой потенциал охватывает необычайно широкий арсенал, включает в себя чуть ли не все мыслимые цели образования.

Примерная хронокарта занятия по теме: «Многогранные углы. Многогранник»

(время занятия 90 минут)

Этапы занятия

Деятельность

Цель этапа занятия

Оснащение этапа

Мин.

преподавателя

студентов

1

Орг. момент.

Приветствие. Проверка готовности аудитории.

Дежурный информирует об отсутствующих. Контроль внешнего вида студентов.

Мобилизация внимания, выявление готовности аудитории к занятию.

Журнал группы.

1

2

Актуализация опорных знаний.

Проводит фронтальный опрос группы (не оценивая), анализирует степень усвоения предыдущей темы, проверяет и оцениваетвыполнение письменного задания.

Устно отвечают на вопросы, на доске записывают упражнения из домашней работы.

Выявление степени подготовки студентов к занятию и степень усвоения материала по предыдущей теме. Развитие коммуникативных способностей обучающихся.

Вопросы для фронтального опроса группы (устно)

(Приложение №1), доска для письменных ответов.

15

3

Сообщение темы занятия, постановка цели, обозначение актуальности данной темы.

Сообщает тему занятия, определяет цель, обосновывает значимость изучаемой темы.

Слушают, записывают дату и тему занятия в рабочих тетрадях.

Обозначить цель занятия, заинтересовать обучающихся, сконцентрировать их внимание.

Методическая разработка, мультимедийное оборудование, мультимедийная презентация.

2

4

Изучение нового материала по плану.

Объясняет новый материал, сохраняет записи на доске. Демонстрирует презентацию.

Слушают, анализируют, выделяют главное, делают выводы, конспектируют.

Сформировать представления об основных понятиях пространственных геометрических фигурах, их основных свойствах; сформировать умения распознавать на чертежах, моделях и в реальном мире многогранные геометрические фигуры.

Учебник Геометрия. Учебник для 10-11классов средней школы под ред. Атанасяна Л.С. [и др.], методическая разработка (блок информации), мультимедийное оборудование, мультимедийная презентация.

20

5

Первичное закрепление знаний, выполнение упражнений.

Выполняет пошаговую проверку деятельности учащихся, оказывает помощь, консультирует.

Работают в коллективе, выполняя одинаковые задания, аналогичные разобранным при объяснении.

Закрепление и систематизация материала, ликвидация пробелов в понимании в полученных знаниях. Сформировать представления об основных понятиях и свойствах пространственных геометрических фигурах, умения распознавать на чертежах многогранные геометрические фигуры. Организация собственной деятельности, выбор типовых методов и способов решения упражнений, оценка их выполнения.

Методическая разработка, презентация.

Приложение №2 (учебник Геометрия. Учебник для 10-11классов средней школы под ред. Атанасяна Л.С. №219, 220, 223)

30

6

Задание на самостоятельную работу.

Определяет набор заданий для самостоятельной работы, проводит инструктаж по выполнению работы, определяет время самостоятельной работы студентов.

Слушают преподавателя, задают вопросы. Всем даётся один и тот же набор задач, которые можно выполнять, консультируясь только с преподавателем.

Развитие скорости восприятия и переработки информации, пунктуальности.

Слайд презентации с инструкциями, раздаточный материал каждому студенту с заданиями на отдельных листах для самостоятельной работы.

2

7

С. р. Контроль текущих теоретических и практических знаний, контроль конечного уровня знаний.

Наблюдает за работой учащихся, оказывает помощь, консультирует

Работаютиндивидуально, используют текст учебника, решают задачи по образцу.

Закрепление материала, формирование умения делать выводы, обобщать. Формирование умения принимать решения. Контроль усвоения знаний и умений учащихся.

Задания для итогового контроля.

Приложение №3

15

8

Итоговый контроль.

Контролирует взаимопроверку (работа в команде), поясняет критерии оценки.

Предоставляют выполненное задание, работают в паре,(работа в малой группе), сопоставляют ответы с эталонами, выставляют оценки.

Закрепление знаний по теме, выявление степени усвоения материала.

Слайд презентации с эталонами ответов и критериями отметки (приложение №3).

3

9

Подведение итогов занятия, выставление оценок.

Оценивает индивидуальную работу, обоснование полученных студентами оценок.

Слушают, задают вопросы, участвуют в обсуждении.

Развитие эмоциональной устойчивости, объективности оценки своих действий, умения работать самостоятельно.

Журнал группы.

1

10

Домашнее задание

Проводит инструктаж по выполнению домашнего задания.

Слушают, записывают, задают вопросы.

Оптимизация самоподготовки, определение объема самостоятельной внеаудиторной работы.

Слайд презентации с домашним заданием.

1

Блок информации

Изложение учебного материала:

«Многогранные углы. Многогранник»

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека кправильным многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Форма первоэлемента Земли - куб, Воздуха - октаэдр, Огня - тетраэдр, Воды - икосаэдр, а всему миру творец придал форму пятиугольного додекаэдра. О том, что Земля имеет форму шара, учили Пифагорейцы. По Пифагору, существует 5 телесных фигур: высшее божество само построило Вселенную на основании геометрической формы додекаэдра. Земля подобна Вселенной, и у Платона Земля – тоже додекаэдр.

Греческая математика, в которой впервые появилась теория многогранников, развивалась под большим влиянием знаменитого мыслителя Платона. 
Платон (427–347 до н.э.) – великий древнегреческий философ, основатель Академии и родоначальник традиции платонизма. Одним из существенных черт его учения является рассмотрение идеальных объектов - абстракций. Математика, взяв на вооружение идеи Платона, со времен Евклида изучает именно абстрактные, идеальные объекты. Однако и сам Платон, и многие древние математики вкладывали в термин идеальный не только смысл абстрактный, но и смысл наилучший. В соответствии с традицией, идущей от древних математиков, среди всех многогранников лучшие те, которые имеют своими гранями правильные многоугольники.

Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер — вершинами многогранника. По числу граней различают четырехгранники, пятигранники и т. д. Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней. Выпуклый многогранник называется правильным, если все его грани — правильные одинаковые многоугольники и все многогранные углы при вершинах равны. Существует 5 видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.

       

Доказательство того, что существует ровно пять правильных выпуклых многогранников, очень простое. Рассмотрим развертку вершины такого многогранника. Каждая вершина может принадлежать трем и более граням.

Сначала рассмотрим случай, когда грани многогранника - равносторонние треугольники. Поскольку внутренний угол равностороннего треугольника равен 60°, три таких угла дадут в развертке 180°. Если теперь склеить развертку в многогранный угол, получится тетраэдр - многогранник, в каждой вершине которого встречаются три правильные треугольные грани. Если добавить к развертке вершины еще один треугольник, в сумме получится 240°. Это развертка вершины октаэдра. Добавление пятого треугольника даст угол 300° - мы получаем развертку вершины икосаэдра. Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° - эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику.

Теперь перейдем к квадратным граням. Развертка из трех квадратных граней имеет угол 3x90°=270° - получается вершина куба, который также называют гексаэдром. Добавление еще одного квадрата увеличит угол до 360° - этой развертке уже не соответствует никакой выпуклый многогранник.

Три пятиугольные грани дают угол развертки 3*72°=216 - вершина додекаэдра. Если добавить еще один пятиугольник, получим больше 360°.

Для шестиугольников уже три грани дают угол развертки 3*120°=360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует.

Таким образом, существует лишь пять выпуклых правильных многогранников - тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями.

Платоновы тела - трехмерный аналог плоских правильных многоугольников. Однако между двумерным и трехмерным случаями есть важное отличие: существует бесконечно много различных правильных многоугольников, но лишь пять различных правильных многогранников. Доказательство этого факта известно уже более двух тысяч лет; этим доказательством и изучением пяти правильных тел завершаются Начала Евклида.

Евклид вовсе не собирался выпускать систематический учебник геометрии. Он задался целью написать сочинение о правильных многогранниках, рассчитанное 
на начинающих, в силу этого ему пришлось изложить все необходимые сведения.
  д'Арси Томпсон

Существует семейство тел, родственных платоновым - это полуправильные выпуклые многогранники, или Архимедовы тела. У них все многогранные углы равны, все грани - правильные многоугольники, но нескольких различных типов. Называют 13 или 14 архимедовых тел(число неточное, поскольку псевдоромбокубоктаэдр иногда не причисляют к этому семейству).

Кроме того, имеют равные многогранные углы и правильные грани нескольких типов тела из двух бесконечных семейств - призмы и антипризмы.

Кеплер Иоганн (Kepler I, 1571-1630г) – немецкий астроном. Открыл законы движения планет. В 1596 году Кеплер предложил правило, по которому вокруг сферы Земли описывается додекаэдр, а в нее вписывается икосаэдр. ( «Гармония мира», 1619г.) И.Кеплер предположил, что расстояния между орбитами планет можно получить на основании Платоновых тел, вложенных друг в друга. Результаты его расчётов хорошо согласовались с действительными расстояниями между планетными орбитами.

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). М ежду каждой парой небесных сфер, по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна.

Эта модель выглядела для своего времени довольно правдоподобно. Во-первых, расстояния, вычисленные при помощи этой модели, были достаточно близки к истинным (учитывая доступную тогда точность измерения). Во-вторых, модель Кеплера давала объяснение, почему существует только шесть (именно столько было тогда известно) планет - именно шесть планет гармонировали с пятью Платоновыми телами.

Однако даже на тот момент эта привлекательная модель имела один существенный недостаток: сам же Кеплер показал, что планеты вращаются вокруг Солнца не по окружностям (сферам), а по эллипсам (первый закон Кеплера). Нечего и говорить, что позже, с открытием еще трех планет и более точным измерением расстояний, эта гипотеза была полностью отвергнута.

Другим выдающимся вкладом Кеплера в геометрию многогранников является открытие им двух звездных правильных тел. (Всего их четыре; два других нашел французский математик Луи Пуансон в 1809 г.)

Математика владеет не только истиной, но и высшей красотой – красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному  совершенству, которое свойственно лишь величайшим образцам искусства. Бертран Рассел

Следующий серьезный шаг в науке о многогранниках был сделан в XVIII веке Леонардом Эйлером (1707-1783), который без преувеличения «поверил алгеброй гармонию». Теорема Эйлера о соотношении между числом вершин, ребер и граней выпуклого многогранника, доказательство которой Эйлер опубликовал в 1758 г. в «Записках Петербургской академии наук», окончательно навела математический порядок в многообразном мире многогранников.

Вершины + Грани - Рёбра = 2.

Многогранник

Вершины

Грани

Рёбра

Оси симметрии

Плоскости симметрии

Тетраэдр

4

4

6

3

6

Куб

8

6

12

9

9

Октаэдр

6

8

12

9

7

Додекаэдр

20

12

30

15

15

Икосаэдр

12

20

30

15

15

Если наблюдать и рассматривать многогранные формы, то можно не только почувствовать их красоту, но и обнаружить некоторые закономерности, возможно, имеющие прикладное значение.

Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие — в виде вирусов, простейших микроорганизмов.

 Кристаллы — тела, имеющие многогранную форму. Вот один из примеров таких тел: кристалл пирита (сернистый колчедан FeS) — природная модель додекаэдра. Пирит (от греч. “пир” — огонь) — сернистое железо или серный колчедан, наиболее распространенный минерал из группы сульфидов. Размеры кристаллов пирита часто достигают нескольких сантиметров и являются хорошим коллекционным материалом. От других подобных ему минералов отличается твердостью: царапает стекло.

 Замечено, что наша матушка-Земля последовательно проходит эволюцию правильных объемных фигур. Существует много данных о сравнении структур и процессов Земли с вышеуказанными фигурами. Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозою - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

 Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфических свойств, позволяющих объяснить многие непонятные явления.

 Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Советские инженеры В. Макаров и В. Морозов потратили десятилетия на исследование данного вопроса. Они пришли к выводу, что развитие Земли шло поэтапно, и в настоящее время процессы, происходящие на поверхности Земли, привели к появлению залежей с икосаэдро-додекаэдровым узором. Еще в 1929 году С.Н. Кислицин в своих работах сопоставлял структуру додекаэдра-икосаэдра с залежами нефти и алмазов.

В. Макаров и В. Морозов утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) - центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников. К тому же согласно исследованиям авторов, в настоящую эпоху все ближайшие небесные тела свои процессы располагают согласнододекаэдро-икосаэдрной системе, что замечено у Марса, Венеры, Солнца. Аналогичные энергетические каркасы присущи всем элементам Космоса (Галактики, звезды и т. д.).

С позиций изучения симметрии, учитывая представление о додекаэдро-икосаэдрическом силовом каркасе Земли как планеты, следует признать, что в этом смысле Земля является живым существом. С душою, которую П.А. Флоренский назвал “пневматосфера”, со свободой воли и разумом.

Додекаэдрическая структура, по мнению Д. Винтера (американского математика), присуща не только энергетическому каркасу Земли, но и строению живого вещества. В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем октаэдр, куб и, наконец, додекаэдро-икосаэдрическая структура гаструлы. И наконец, самое, пожалуй, главное – структура ДНК генетического кода жизни – представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции золотого сечения!

 Впрочем, многогранники - отнюдь не только объект научных исследований. Их формы - завершенные и причудливые, широко используются в декоративном искусстве.

Надгробный памятник в кафедральном соборе Солсбери

Титульный лист книги Ж. Кузена «Книга о перспективе»

 Ярчайшим примером художественного изображения многогранников в XX веке являются, конечно, графические фантазии Маурица Корнилиса Эшера (1898-1972), голландского художника, родившегося в Леувардене.

 Мауриц Эшер в своих рисунках как бы открыл и интуитивно проиллюстрировал законы сочетания элементов симметрии, т.е. те законы, которые властвуют над кристаллами, определяя и их внешнюю форму, и их атомную структуру, и их физические свойства.

Математик, так же как и художник или поэт, создает узоры, и если
его узоры более устойчивы, то лишь потому, что они составлены из идеальных геометрических фигур.

План самостоятельной работы студентов

Тема: «Многогранные углы. Многогранник»

Название этапа

Описание этапа

Цель

Время

1

Актуализация опорных знаний.

Проверка выполнения домашнего задания. Повторяют, отвечают устно на вопросы по предыдущей теме, записывают упражнения на доске.

Приложение №1.

Выявление степени усвоения материала по предыдущей теме.

15

2

Первичное закрепление знаний.

Выполняют одинаковые задания, аналогичные разобранным при объяснении. (учебник Геометрия. Учебник для 10-11классов средней школы под ред. Атанасяна Л.С. №219, 220, 223).

Приложение №2.

Закрепление полученных знаний, формирование умений анализировать, сравнивать и обобщать. Формирование представления об основных понятиях пространственных геометрических фигур, их основных свойствах.

30

3

Контроль конечного уровня знаний.

Выполнение задания для итогового контроля (листы с заданиями для каждого студента).

Приложение №3.

Контроль усвоения знаний и умений учащихся. Выработка умения оценивать конечный результат. Выявление степени достижения цели занятия.

15

Приложение №1

Вопросы для фронтальной беседы по предыдущей теме:

Решение задач по теме «Степенная функция и ее производная»

Дайте определение степенной функции.

Ответ: Степенной функцией с вещественным показателем a называется функция y = x n , x > 0. Заметим, что для натуральных n степенная функция определена на всей числовой оси. 


Перечислите основные свойства степенной функции.

Ответ: К основным свойствам степенной функции y = при a > 0 относятся:

Область определения функции - промежуток (0; +  ).

Область значений функции - промежуток (0; + ).

Для любых a график функции проходит через точку (1; 1).

Функция строго монотонно возрастает в области определения функции, то есть, если x1 < x2 то ar1 < ar2 .

Изобразите график степенной функции при a > 0.

Изобразите график степенной функции при a < 0.

Свойства степенной функции a при a < 0.

Ответ: К основным свойствам степенной функции a при a < 0 относятся:

Область определения функции - промежуток (0; + ).

Область значений функции - промежуток (0; + ).

Для любых a график функции проходит через точку (1; 1).

Функция строго монотонно возрастает в области определения функции, то есть, если x1 < x2 то ar1 > ar2 .

Проверка выполнения упражнений из домашней работы:

с.258 упр. 559

Критерии оценки за письменную работу:

«3» - выполнена половина всех заданий, и студент ответил на дополнительный вопрос по теме;

«4» - выполнена большая часть заданий, и студент ответил на дополнительный вопрос по теме;

«5» - выполнены все задания, и студент ответил на дополнительный вопрос по теме.

Приложение №2

Задания для первичного закрепления материала

стр. 67 № 219, 220, 223

Приложение №3

Задания для самостоятельной работы (итоговый контроль)

Тест по теме «Многогранники»

Вариант 1

Многогранник – это тело, поверхность которого состоит из:

параллелограммов

многоугольников и треугольников

многоугольников

многоугольников и параллелограммов

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется

правильной

прямой

наклонной

перпендикулярной

Диагональ многогранника – это отрезок, соединяющий

любые две вершины многогранника

две вершины, не принадлежащие одной грани

две вершины, принадлежащие одной грани

две вершины, одного основания

Количество ребер шестиугольной призмы

18

6

24

12

Наименьшее число граней призмы

3

4

5

6

Вариант 2

Поверхность призмы состоит из

двух многоугольников, расположенных в двух равных плоскостях и конечного числа параллелограммов

двух равных многоугольников и конечного числа параллелограммов

двух равных многоугольников, расположенных в двух плоскостях и конечного числа параллелограммов

двух равных многоугольников, расположенных в параллельных плоскостях и конечного числа параллелограммов

Правильная призма – это

призма, основанием которой является правильный многоугольник

призма, основанием которой является равносторонний треугольник

прямая призма, основанием которой является правильный многоугольник

прямая призма, основанием которой является квадрат

Высотой призмы называется:

отрезок, соединяющий две вершины призмы, не принадлежащие одной грани

отрезок, соединяющий две вершины, принадлежащие одной грани

расстояние между плоскостями ее оснований

расстояние между двумя боковыми гранями

Количество граней шестиугольной призмы

6

8

10

12

Наименьшее число ребер призмы

9

8

7

6

Критерии оценки: «5» баллов – 5 верно выполненных заданий

«4» балла – 4 верно выполненных задания

«3» балла – 3 верно выполненных задания

Ответы:

Вариант

1

2

3

4

5

1

в

б

б

а

в

2

г

в

в

б

а

Домашнее задание

Цель:Определить объем информации для самостоятельной работы, обратить внимание на значимые моменты.

Работа с учебником Геометрия. Учебник для 10 - 11 классов средней школы / Атанасян Л.С. [и др.], выполнение упражнения [с.60-62 , с.67 зад. 218];

Определения выучить по конспекту лекции.

218

Перечень оборудования и оснащения

1. Доска

2. Компьютерное и мультимедийное оборудование

3. Учебник с заданиями для первичного закрепления знаний, раздаточный материал с заданиями итогового контроля каждому студенту

4. Электронный учебник

5. Мультимедийная презентация (30 слайдов)

Список использованных источников

Геометрия. Учебник для 10-11классов [Текст] Учебник для 10 - 11 классов средней школы / Атанасян Л.С. [и др.] 18-е изд. - М. : Просвещение, 2009. - 255 с.

ГДЗ - готовое домашние задание по геометрии за 10-11 класс к учебнику Атанасянаонлайн[Электронный ресурс] // Режим доступа:http://ggddzz.ru/reshebnik/gdz-po-geometrii-10-11-klass-atanasjan/list/218/

3. Образовательный портал «Инфоурок» / Тесты по геометрии 10-11 класс [Электронный ресурс] // Режим доступа: http://infourok.ru/konkurs?dwldurl=http%3A%2F%2Ffs01.infourok.ru%2Fuploads%2F120855060428.doc

7

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/184704-metodicheskaja-razrabotka-kombinirovannogo-za

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки