Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
24.09.2018

Рисуем на координатной плоскости

Теплых Елена Викторовна
учитель математики
из истории координатной плоскости

Содержимое разработки

Муниципальное казенное общеобразовательное учреждение

«Песчанская средняя общеобразовательная школа»

Исследовательская работа по математике

«Рисуем на координатной плоскости»

Авторы: ученики 6 класса

Евсиков Александр,

Клюкин Юрий,

Леготин Илья

Руководитель: Е.В. Теплых,

учитель математики

2017-2018 учебный год

Содержание:

стр.

1.Введение 3

2.Основная часть

2.1. История возникновения координат. 4-5

2.2. Координатная плоскость. 6-8

3.Заключение 9

4.Список используемой литературы 10

5.Приложение 11

2

1.Введение

При изучении темы «Координатная плоскость» в 6 классе мы познакомились с красивыми заданиями на координатной плоскости. Они вызвали у нас большой интерес. Все учащиеся нашего класса с удовольствием рисовали рисунки.

Мы научились понимать, что из абстрактных точек можно получить знакомый рисунок: изображали не только отдельные точки, но и любые предметы, животных, растения, даже целые сюжеты.

Есть много нетрадиционных задач с новизной заданий, которые можно с успехом использовать при изучении темы «Координатная плоскость», но они не вошли в школьные учебники и методические пособия для учителя.

Мы решили заполнить пробел в учебниках и создать свою работу под названием «Рисуем на координатной плоскости». В приложении работы будут собраны многие интересные задания.

ГИПОТЕЗА: в координатной плоскости можно рисовать

АКТУАЛЬНОСТЬ: данная тема имеет особое место в математике и интересна тем, что в координатной плоскости можно строить не только графики различных функций, но и создавать красивые рисунки.

Цель работы: организовать поиск занимательных задач и создать набор заданий на построение рисунков для работы на уроках математики .

Задачи: Изучение литературы по истории возникновения координат и

системы координат.

Оформить материал в виде рисунков.

Методы: Сбор задач и обработка информации.

Анкетирование учащихся в 7-8 классах по теме

«Координатная плоскость»

Работа с источниками по истории математики.

Работа с компьютером.

3

2. Основная часть.

2.1.История возникновения координат.

За 200 лет до нашей эры греческий ученый Гиппарх ввёл географические координаты. Он предложил нарисовать на географической карте параллели и меридианы и обозначить числами широту и долготу. С помощью этих двух чисел можно точно определить положение острова, поселка, горы или колодца в пустыне и нанести их на карту или глобус, Научившись определять в открытом мире широту и долготу местонахождения корабля, моряки получили возможность выбирать нужное им направление.

Восточную долготу и северную широту обозначают числами со знаком «плюс», а западную долготу и южную широту — со знаком «минус». Таким образом, пара чисел со знаками однозначно определяет точку на земном шаре.

Например, пара +70° , +60° определяет точку в центре острова Вайгач, расположенного в Карском море.

У писателя Жюля Верна, некоторые романы построены на ситуациях, связанных с географическими координатами. Это романы «Удивительные приключения дядюшки Антифера» и «Дети капитана Гранта».

Долгое время лишь география "землеописание"  - пользовалась  этим замечательным изобретением, и только в 14 веке французский математик Никола Орсем (1323-1382) попытался приложить его к "землеизмерению" - геометрии. Он предложил покрыть плоскость прямоугольной сеткой и называть широтой и долготой то, что мы теперь называем абсциссой и ординатой. 

4

На основе этого удачного нововведения возник метод координат, связавший геометрию с алгеброй. Основная заслуга в создании этого метода принадлежит великому французскому математику Рене Декарту (1596 - 1650). В его честь такая система координат называется декартовой, обозначающая место любой точки плоскости расстояниями от этой точки до "нулевой широты" - оси абсцисс " и "нулевого меридиана"  - оси ординат.

По традиции, введенной Декартом, "широта" точки обозначаются буквой x, "долгота" - буквой "y".

На этой системе основаны многие способы указания места.

Например, на билете в кинотеатр стоят два числа: ряд и место — их можно рассматривать как координаты места в зале.

Подобные координаты приняты о шахматах. Вместо одного из чисел берется буква: вертикальные ряды клеток обозначаются буквами латинского алфавита, а горизонтальные — цифрами. Таким образом, каждой клетке шахматной доски ставится в соответствие пэра из буквы и числа, и шахматисты получают возможность записывать свои партии.

Тот же принцип применяется на планах городов. План города разбивают на квадраты занумерованные с помощью букв и цифр, а на оборотной стороне перечисляют все изображенные улицы в алфавитном порядке и указывают, в каком квадрате они находятся.

5

2.2 Координатная плоскость

Координатная плоскость - это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами. В школьном курсе математики школьникам приходится довольно тесно работать с системой координат – строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их.

Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.

В системе координат выделяют две оси. Первая ось - абсцисс - горизонтальная. Она обозначается как (Оx). Вторая ось - ординат, которая проходит вертикально через точку отсчета и обозначается как (Оy). Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0. Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость. Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.

6

Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки. Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината - положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной - ордината. Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка.

А поговорим о том, как наносить на нее точки, координаты фигур. На координатной плоскости сделать это не так тяжело, как может показаться на первый взгляд. В первую очередь строится сама система, на нее наносятся все важные обозначения. Затем уже идет работа непосредственно с точками или фигурами. При этом даже при построении фигур сначала на плоскость наносятся точки, а затем уже прорисовываются фигуры.

7

Для того чтобы построить координатную плоскость, понадобится только линейка и ручка или карандаш. Сначала рисуется горизонтальная ось абсцисс, затем вертикальная - ординат. При этом важно помнить, что оси пересекаются под прямым углом. Далее на каждой оси указывают направление и подписывают их с помощью общепринятых обозначений x и y. Также отмечается точка пересечения осей и подписывается цифрой 0. Следующим обязательным пунктом является нанесение разметки. На каждой из осей в обоих направлениях отмечаются и подписываются единицы-отрезки. Это делается для того, чтобы затем можно было работать с плоскостью с максимальным удобством.

При построении точек следует помнить, как правильно записываются их координаты. Так, обычно задавая точку, в скобках пишут две цифры. Первая цифра обозначает координату точки по оси абсцисс, вторая - по оси ординат. Строить точку следует таким образом. Сначала отметить на оси Ox заданную точку, затем отметить точку на оси Oy. Далее провести воображаемые линии от данных обозначений и найти место их пересечения - это и будет заданная точка. Нам останется только отметить ее и подписать.

Для того чтобы построить на координатной плоскости любую фигуру, следует знать, как размещать на ней точки. В первую очередь нам понадобятся координаты точек фигуры. Именно по ним мы и будем наносить на нашу систему координат выбранные нами геометрические фигуры или рисунки .

8

3.Заключение

Нам было очень интересно работать над этой темой. Работу мы продолжим и дальше, так как можно самим придумать много разных рисунков по координатам. Главным итогом нашей работы стало создание набора рисунков, которому дали название «Рисунки в координатной плоскости». В нем собраны интересные задания по теме проекта, которые будут полезными при изучении математики.

В свободное время тоже можно порисовать. Красивые рисунки будут получаться даже у тех учеников, которые не умеют хорошо рисовать, потому что эти задания просты по формуле и разнообразны по внешнему выражению.

Выполнение таких заданий заставляют увидеть связь красоты и математики, соприкоснуться с миром прекрасного. Применение такого подхода в процессе обучения позволит сделать уроки математики интересными и красивыми.

Распределение заданий по уровням сложности и по прикладной тематике позволит выбрать ученику задания в соответствии со своими способностями и познавательными интересами.

Познавательной деятельности ученика можно придать еще большую привлекательность, если при выполнении заданий использовать компьютер.

Мы надеемся, что эти задания будут пользоваться большим спросом у учеников и учителей, потому что их можно применять на уроках математики при изучении темы «Функции и графики», «Координатная плоскость», на занятиях кружка, факультатива.
















9

4.Список используемой литературы

Пономарёва Т.Д. «Я познаю мир».

А. Савин. Координаты // Квант. 1977. №9

Журнал Математика в школе №10 от 2001 г.

Ресурсы интернета:

http://www.glena.ru/coordinates;

http://wiki.iteach.ru/images/6/67/Творческое задание.pdf;

http://www.yandex.ru/картинки;

algolist.maru.wikipedia.org/wiki/;

festival.1september.ru/articles/509560/3.

Сайт википедии http://ru.wikipedia.org/wiki

http://kykaraha.beon.ru/29386-228-risunki-na-koordinatnoi-ploskosti-poprobuite-jeto-prikol-no.zhtml

10

5.Приложение

Грибок
1) (6; 0), (6; 2), (5; 1,5), (4; 3), (2; 1), (0; 2,5), (- 1,5; 1,5), (- 2; 5), (- 3; 0,5), (- 4; 2), (- 4; 0).
2) (2; 1), (2,2; 2), (2,3; 4), (2,5; 6), (2,3; 8), (2; 10), (6; 10), (4,8; 12), (3; 13,3), (1; 14),
(0; 14), (- 2; 13,3), (- 3,8; 12), (- 5; 10), (2; 10).
3) (- 1; 10), (- 1,3; 8), (- 1,5; 6), (- 1,2; 4), (- 0,8;2).
Мышонок 1) (3; - 4), (3; - 1), (2; 3), (2; 5), (3; 6), (3; 8), (2; 9), (1; 9), (- 1; 7), (- 1; 6),
(- 4; 4), (- 2; 3), (- 1; 3), (- 1; 1), (- 2; 1), (-2; - 1), (- 1; 0), (- 1; - 4), (- 2; - 4),
(- 2; - 6), (- 3; - 6), (- 3; - 7), (- 1; - 7), (- 1; - 5), (1; - 5), (1; - 6), (3; - 6), (3; - 7),
(4; - 7), (4; - 5), (2; - 5), (3; - 4).
2) Хвост: (3; - 3), (5; - 3), (5; 3).
3) Глаз: (- 1; 5).
Лебедь
1) (2; 7), (0; 5), (- 2; 7), (0; 8), (2; 7), (- 4; - 3), (4; 0), (11; - 2), (9; - 2), (11; - 3),
(9; - 3), (5; - 7), (- 4; - 3).
2) Клюв: (- 4; 8), (- 2; 7), (- 4; 6).
3) Крыло: (1; - 3), (4; - 2), (7; - 3), (4; - 5), (1; - 3).
4) Глаз: (0; 7).
Верблюд
1) (- 9; 6), (- 5; 9), (- 5; 10), (- 4; 10), (- 4; 4), (- 3; 4), (0; 7), (2; 4), (4; 7), (7; 4),
(9; 3), (9; 1), (8; - 1), (8; 1), (7; 1), (7; - 7), (6; - 7), (6; - 2), (4; - 1), (- 5; - 1), (- 5; - 7),
(- 6; - 7), (- 6; 5), (- 7;5), (- 8; 4), (- 9; 4), (- 9; 6).
2) Глаз: (- 6; 7).
Слоник
1) (2; - 3), (2; - 2), (4; - 2), (4; - 1), (3; 1), (2; 1), (1; 2), (0; 0), (- 3; 2), (- 4; 5),
(0; 8), (2; 7), (6; 7), (8; 8), (10; 6), (10; 2), (7; 0), (6; 2), (6; - 2), (5; - 3), (2; - 3).
2) (4; - 3), (4; - 5), (3; - 9), (0; - 8), (1; - 5), (1; - 4), (0; - 4), (0; - 9), (- 3; - 9),
(- 3; - 3), (- 7; - 3), (- 7; - 7), (- 8; - 7), (- 8; - 8), (- 11; - 8), (- 10; - 4), (- 11; - 1),
(- 14; - 3), (- 12; - 1), (- 11;2), (- 8;4), (- 4;5).
3) Глаза: (2; 4), (6; 4).
Конь
1) (14; - 3), (6,5; 0), (4; 7), (2; 9), (3; 11), (3; 13), (0; 10), (- 2; 10), (- 8; 5,5),
(- 8; 3), (- 7; 2), (- 5; 3), (- 5; 4,5), (0; 4), (- 2; 0), (- 2; - 3), (- 5; - 1), (- 7; - 2),

11


(- 5; - 10), (- 2; - 11), (- 2; - 8,5), (- 4; - 8), (- 4; - 4), (0; - 7,5), (3; - 5).
2) Глаз: (- 2; 7).

Звёздочка

(-6;0), (-3;1), (-4;4), (-1;3), (0;6), (1;3), (4;4), (3;1), (6;0), (3;-1), (4;-4),

(1;-3), (0;-6), (-1;-3), (-4;-4), (-3;-1), (-6;0)

Чайник

(2;5), (5;1), (7;1), (10;4), (12;4), (6;-5), (-6;-5), (-6;3), (-3;5), (2;5)

Ручка: (-3;5), (-3;9), (2;9), (2;5)

Бабочка

(-2;-5), (-5;-7), (-8;-7), (-8;-5), (-5;-2), (-9;3), (-8;5), (-6;5), (-2;4), (2;5),

(4;5), (5;3), (1;-2), (4;-5), (4;-7), (1;-7), (-2;-5)

Усики: (-2;4), (-3;6)

(-2;4), (-1;6)

Парусник

(-11;8), (-5;-3), (8;-4), (9;1), (6;1), (7;5), (8;7), (7;8), (7;13), (7;14), (4;15),

(5;14), (4;13), (7;13), (1;4), (-2;4), (-4;6), (-7;7), (-11;8)

Домик

(0;9), (-9;4), (-7;4), (-7;-9), (7;-9), (7;4), (9;4), (0;9)

Окно: (2;2), (-2;2), (-2;-4), (2;-4), (2;2)

Страус

(0;0). (-1;1), (-3;1), (-2;3), (-3;3), (-4;6), (0;8),

(2;5),(2;11), (6;10), (3;9),(4;5), (3;0), (2;0), (1;-7), (3;-8), (0;-8), (0;0)

Глаз: (3;10)

Ёлочка

(0;5), (2;2), (1;2), (3;-1), (2;-1), (4;-4), (1;-4), (1;-5), (-1;-5), (-1;-4),

(-4;-4), (-2;-1), (-3;-1), (-4;2), (-2;2), (0;5)

Утка

(3;0), (1;2), (-1;2), (3;5), (1;8), (-3;7), (-5;8), (-3;4), (-6;3), (-5;2),

(-5;-2), (-2;-3), (-4;-4), (1;-4), (3;-3), (6;1), (3;0) Глаз: (-1;5)

Кит

(4;-0,5), (6,5;-2), (-2;-3), (-10,5;4), (-12,5;7,5), (-9;11), (-13;10),

(- 17;11), (-12,5;7,5), (-10,5;4), (-3;2), (1;4,5), (7,5;3), (6,5;-2)

Глаз: (4;2)

Пёс

(-8;-6), (-9;-4), (-9,5;-2), (-11;0), (-12;-1), (-11;-2), (-11,5;-3), (-11;-4),

(-11;-5), (-10;-6), (-10;-7), (-6;-10), (1;-10), (0,5;-9), (-1;-9), (0;-6),

(-2;- 4), (1;-1), (1;-8), (2;-10), (4;-10), (3,5;-9), (3;-9), (4;-2),

(2;5), (6;4,5), (6;5,5), (4;6), (6;6), (6,5;7,5), (3,5;7,5), (1;12),

(-0,5;10), (-2;9), (-3;7), (-3;5),

(-4;3), (-4,5;1), (-8;-6)

Глаз: (0,5;8), (1;7,5), (2;8) (1;8.5), (0,5;8)

Рыбка

(3;3), (0;3), (-3;2), (-5;2), (-7;4), (-8;3), (-7;1), (-8;-1), (-7;-2), (-5;0),

(-1;-2), (0;-4), (2;-4), (3;-2), (5;-2), (7;0), (5;2), (3;3), (2;4), (-3;4), (-4;2)

Глаз: (5;0)

Заяц

(1;7), (0;10), (-1;11), (-2;10), (0;7), (-2;5), (-7;3), (-8;0), (-9;1), (-9;0),

(-7;-2), (-2;-2), (-3;-1), (-4;-1), (-1;3), (0;-2), (1;-2), (0;0), (0;3), (1;4),

(2;4), (3;5), (2;6), (1;9), (0;10) Глаз: (1;6)

Сорока

1) (-1;2), (5;6), (7;13), (10;11), (7;5), (1;-4), (-2;-4), (-5;0), (-3;0), (-1;2),

(-2;4), (-5;5), (-7;3), (-11;1), (-6;1), (-7;3),(-5;0), (-6;0), (-10;-1), (-7;1),

(-6;0)

2) Крыло: (0;0), (7;3), (6;1), (1;-3), (0;0)

3) (1;-4), (1;-7), (-1;-4), (-1;-7)

4) Глаз: (-5;3)

Волк

1) (- 9; 5), (- 7; 5), (- 6; 6), (- 5; 6), (- 4; 7), (- 4; 6), (- 1; 3), (8; 3), (10; 1), (10; - 4),

(9; - 5), (9; - 1), (7; - 7), (5; - 7), (6; - 6), (6; - 4), (5; - 2), (5; - 1), (3; - 2), (0; - 1),

(- 3; - 2), (- 3; - 7), (- 5; - 7), (- 4; - 6), (- 4; - 1), (- 6; 3), (- 9; 4), (- 9; 5).

2) Глаз: (- 6; 5)

Бегун

1) (- 8; 1), (- 6; 2), (- 2; 0), (1; 2), (5; 1), (7; - 4), (9; - 3).

2) (- 2; 6), (0; 8), (3; 7), (5; 5), (7; 7).

3) (1; 2), (3; 9), (3; 10), (4; 11), (5; 11), (6; 10), (6; 9), (5; 8), (4; 8), (3; 9).

Ракета

1) (1; 5), (0; 6), (- 1; 5), (0; 4), (0; - 8), (- 1; - 10), (0; 1), (0; - 8).

2) (- 4; - 6), (- 1; 10), (0; 12), (1; 10), (4; - 6), (- 4; - 6).

3) (- 3; - 6), (- 6; - 7), (- 2; 1), (- 3; - 6).

4) (2; 1), (3; - 6), (6; - 7), (2; 1).

Лис

1) (- 8; - 9), (- 6; - 7), (- 3; - 7), (1; 1), (1; 3), (4; 7), (4; 4), (7; 2,5),

(4; 1), (6; - 8), (7; - 8), (7; - 9), (5; - 9), (3; - 3), (1,5; - 6), (3; - 8), (3; - 9), (- 8; - 9).

2) Глаз: (4; 3).

Парусник

1) (0; 0), (- 10; 1), (0; 16), (- 1; 2), (0; 0).

2) (- 9; 0), (- 8; - 1), (- 6; - 2), (- 3; - 3), (5; - 3), (10; - 2), (12; - 1), (13; 0), (- 9; 0).

3) (0; 0), (0; 16), (12; 2), (0; 0).

Лисица

1) (- 3; 0), (- 2; 1), (3; 1), (3; 2), (5; 5), (5; 3), (6; 2), (7; 2), (7; 1,5), (5; 0), (4; 0),

(4; - 1,5), (3; - 1), (3; - 1,5), (4; - 2,5), (4,5; - 2,5), (- 4,5; - 3), (3,5; - 3), (2; - 1,5),

(2; - 1), (- 2; - 2), (- 2; - 2,5), (- 1; - 2,5), (- 1; - 3), (- 3; - 3), (- 3; - 2), (- 2; - 1),

(- 3; - 1), (- 4; - 2), (- 7; - 2), (- 8; - 1), (- 7; 0), (- 3; 0).

2) Глаз: (5; 2).

Гусь

1) (- 3; 9), (- 1; 10), (- 1; 11), (0; 12), (1,5; 11), (1,5; 7), (- 0,5; 4), (- 0,5; 3), (1; 2),

(8; 2), (10; 5), (9; - 1), (7; - 4), (1; - 4), (- 2; 0), (- 2; 4), (0; 7), (0; 9), (- 3; 9).

2) Крыло: (1; 1), (7; 1), (7; - 1), (2; - 3), (1; 1).

3) Глаз: (0; 10,5).

Кумушка Лиса

1) (- 7; 6), (1; 8), (3; 11), (4; 8), (6; 8), (5; 6), (5; 5), (2; 0), (- 7; 6).

2) (- 4; 0), (8; 0), (5; - 3), (8; - 9), (- 3; - 9), (0; - 3), (- 4; 0).

3) Хвост: (6,5; - 6), (10; - 6), (11; - 8), (11; - 9), (8; - 9).

4) Платок: (- 4; 0), (- 9; - 4), (- 3; - 4), (- 4; 0).

5) Глаз: (1; 6).

Самолёт

1) (- 7; 0), (- 5; 2), (7; 2), (9; 5), (10; 5), (10; 1), (9; 0), (- 7; 0).

2) (0; 2), (5; 6), (7; 6), (4; 2).

3) (0; 1), (6; - 3), (8; - 3), (4; 1), (0; 1).

Вертолёт

1) (- 5; 3), (- 3; 5), (6; 5), (10; 3), (10; 1), (9; 0), (- 2; 0), (- 5; 3).

2) (- 5; 3), (- 10; 7), (- 3; 5).

3) (5; 0), (5; - 1), (6; - 2), (8; - 2), (9; - 2,5), (8; - 3), (- 3; - 3), (- 4; - 2,5), (- 3; - 2),

(- 1; - 2), (- 2; - 1), (- 2; 0).

4) (- 12; 5), (- 8; 9).

5) (- 6; 7), (10; 7).

6) (2; 5), (2; 7).

7) (- 1; 1), (- 1; 4), (2; 4), (2; 1), (- 1; 1).

8) (5; 5), (5; 2), (10; 2).

Настольная лампа

(0; 0), (- 3; 0), (- 3; - 1), (4; - 1), (4; 0), (1; 0), (6; 6), (0; 10), (1; 11), (- 2; 13),

(- 3; 12), (- 7; 12), (0; 5), (0; 9), (5; 6), (0; 0).

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/323614-risuem-na-koordinatnoj-ploskosti

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки