Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
03.12.2018

Задачи по математике для 9 класса

Данный материал содержит подборку задач по различным темам по курсу математика. Задачи можно использовать не только на уроках при закреплении темы, но и для подготовке к ОГЭ по математике.

Содержимое разработки

Пропорции

1. На пост пред­се­да­те­ля школьного со­ве­та претендовали два кандидата. В го­ло­со­ва­нии приняли уча­стие 120 человек. Го­ло­са между кан­ди­да­та­ми распределились в от­но­ше­нии 3:5. Сколь­ко голосов по­лу­чил победитель?

2. Число хвой­ных деревьев в парке от­но­сит­ся к числу лист­вен­ных как 1:4. Сколь­ко процентов де­ре­вьев в парке со­став­ля­ют лиственные?

3. Тест по ма­те­ма­ти­ке со­дер­жит 30 заданий, из ко­то­рых 18 за­да­ний по алгебре, осталь­ные  –– по геометрии. В каком от­но­ше­нии со­дер­жат­ся в тесте ал­геб­ра­и­че­ские и гео­мет­ри­че­ские задания?

1) 3:2

2) 2:3

3) 3:5

4) 5:3

4. Пло­щадь зе­мель кре­стьян­ско­го хо­зяй­ства, отведённая под по­сад­ку сель­ско­хо­зяй­ствен­ных куль­тур, со­став­ля­ет 24 га и рас­пре­де­ле­на между зер­но­вы­ми и овощ­ны­ми куль­ту­ра­ми в от­но­ше­нии 5:3. Сколь­ко гек­та­ров за­ни­ма­ют овощ­ные куль­ту­ры?

5. Во время вы­бо­ров го­ло­са из­би­ра­те­лей между двумя кан­ди­да­та­ми рас­пре­де­ли­лись в от­но­ше­нии 3:2. Сколь­ко про­цен­тов го­ло­сов по­лу­чил про­иг­рав­ший?

6. Для при­го­тов­ле­ния фарша взяли го­вя­ди­ну и сви­ни­ну в от­но­ше­нии 7:13. Какой про­цент в фарше со­став­ля­ет сви­ни­на?

7. Для фрук­то­во­го на­пит­ка сме­ши­ва­ют яб­лоч­ный и ви­но­град­ный сок в от­но­ше­нии 13:7. Какой про­цент в этом на­пит­ке со­став­ля­ет ви­но­град­ный сок?

8. Для при­го­тов­ле­ния чай­ной смеси сме­ши­ва­ют ин­дий­ский и цей­лон­ский чай в от­но­ше­нии 9:11. Какой про­цент в этой смеси со­став­ля­ет цей­лон­ский чай?

Проценты

1. Стоимость про­ез­да в при­го­род­ном элек­тро­по­ез­де со­став­ля­ет 198 рублей. Школь­ни­кам предо­став­ля­ет­ся скидка 50%. Сколь­ко руб­лей стоит про­езд груп­пы из 4 взрос­лых и 12 школьников?

2. Чашка, ко­то­рая сто­и­ла 90 рублей, продаётся с 10%-й скидкой. При по­куп­ке 10 таких чашек по­ку­па­тель отдал кас­си­ру 1000 рублей. Сколь­ко руб­лей сдачи он дол­жен получить?

3. Городской бюд­жет со­став­ля­ет 45 млн. р., а рас­хо­ды на одну из его ста­тей со­ста­ви­ли 12,5%. Сколь­ко руб­лей по­тра­че­но на эту ста­тью бюджета?

4. Сберегательный банк на­чис­ля­ет на сроч­ный вклад 20% годовых. Вклад­чик по­ло­жил на счет 800 р. Какая сумма будет на этом счете через год, если ни­ка­ких опе­ра­ций со сче­том про­во­дить­ся не будет?

5. Товар на рас­про­да­же уце­ни­ли на 20%, при этом он стал сто­ить 680 р. Сколь­ко стоил товар до распродажи?

6. Государству при­над­ле­жит 60% акций предприятия, осталь­ные акции при­над­ле­жат част­ным лицам. Общая при­быль пред­при­я­тия после упла­ты на­ло­гов за год со­ста­ви­ла 40 млн. р. Какая сумма в рублях из этой при­бы­ли долж­на пойти на вы­пла­ту част­ным акционерам?

7. Акции пред­при­я­тия рас­пре­де­ле­ны между го­су­дар­ством и част­ны­ми ли­ца­ми в от­но­ше­нии 3:5. Общая при­быль пред­при­я­тия после упла­ты на­ло­гов за год со­ста­ви­ла 32 млн. р. Какая сумма из этой при­бы­ли долж­на пойти на вы­пла­ту част­ным акционерам?Ответ ука­жи­те в рублях.

8. Средний вес маль­чи­ков того же возраста, что и Сергей, равен 48 кг. Вес Сер­гея со­став­ля­ет 120% сред­не­го веса. Сколь­ко весит Сергей?

9. В на­ча­ле года число або­нен­тов те­ле­фон­ной ком­па­нии «Север» со­став­ля­ло 200 тыс. чел., а в конце года их стало 210 тыс. чел. На сколь­ко про­цен­тов уве­ли­чи­лось за год число або­нен­тов этой компании?

10. На счет в банке, доход по ко­то­ро­му со­став­ля­ет 15% годовых, внес­ли 24 тыс. р. Сколь­ко тысяч руб­лей будет на этом счете через год, если ни­ка­ких опе­ра­ций со сче­том про­во­дить­ся не будет?

11. Какая сумма (в рублях) будет про­став­ле­на в кас­со­вом чеке, если сто­и­мость то­ва­ра 520 р., и по­ку­па­тель опла­чи­ва­ет его по дис­конт­ной карте с 5%-ной скидкой?

12. В по­не­дель­ник не­ко­то­рый товар по­сту­пил в про­да­жу по цене 1000 р. В со­от­вет­ствии с при­ня­ты­ми в ма­га­зи­не пра­ви­ла­ми цена то­ва­ра в те­че­ние не­де­ли оста­ет­ся неизменной, а в пер­вый день каж­дой сле­ду­ю­щей не­де­ли сни­жа­ет­ся на 20% от преды­ду­щей цены. Сколь­ко руб­лей будет сто­ить товар на две­на­дца­тый день после по­ступ­ле­ния в продажу?

13. Брюки до­ро­же ру­баш­ки на 20%, а пи­джак до­ро­же ру­баш­ки на 44%. На сколь­ко про­цен­тов пи­джак до­ро­же брюк?

14. Виноград стоит 160 руб­лей за килограмм, а ма­ли­на — 200 руб­лей за килограмм. На сколь­ко про­цен­тов ви­но­град де­шев­ле малины?

15. Кисть, ко­то­рая сто­и­ла 240 руб­лей, продаётся с 25%-й скид­кой. При по­куп­ке двух таких ки­стей по­ку­па­тель отдал кас­си­ру 500 руб­лей. Сколь­ко руб­лей сдачи он дол­жен по­лу­чить?

16. Спор­тив­ный ма­га­зин про­во­дит акцию: «Любая фут­бол­ка по цене 300 руб­лей. При по­куп­ке двух фут­бо­лок — скид­ка на вто­рую 60%». Сколь­ко руб­лей придётся за­пла­тить за по­куп­ку двух фут­бо­лок?

17. В те­че­ние ав­гу­ста по­ми­до­ры по­де­ше­ве­ли на 50%, а затем в те­че­ние сен­тяб­ря по­до­ро­жа­ли на 70%. Какая цена мень­ше: в на­ча­ле ав­гу­ста или в конце сен­тяб­ря — и на сколь­ко про­цен­тов?

В ответе укажите количество процентов.

18. Поступивший в про­да­жу в ап­ре­ле мо­биль­ный те­ле­фон стоил 4000 рублей. В сен­тяб­ре он стал сто­ить 2560 рублей. На сколь­ко про­цен­тов сни­зи­лась цена на мо­биль­ный те­ле­фон в пе­ри­од с ап­ре­ля по сентябрь?

19. Ту­ри­сти­че­ская фирма ор­га­ни­зу­ет трех­днев­ные ав­то­бус­ные экс­кур­сии. Сто­и­мость экс­кур­сии для од­но­го че­ло­ве­ка со­став­ля­ет 3500 р. Груп­пам предо­став­ля­ют­ся скид­ки: груп­пе от 3 до 10 че­ло­век — 5%, груп­пе более 10 че­ло­век — 10%. Сколь­ко за­пла­тит за экс­кур­сию груп­па из 8 че­ло­век?

20. Рас­хо­ды на одну из ста­тей го­род­ско­го бюд­же­та со­став­ля­ют 12,5%. Вы­ра­зи­те эту часть бюд­же­та де­ся­тич­ной дро­бью.

21. Со­дер­жа­ние не­ко­то­ро­го ве­ще­ства в таб­лет­ке ви­та­ми­на со­став­ля­ет 2,5%. Вы­ра­зи­те эту часть де­ся­тич­ной дро­бью.

22. Плата за те­ле­фон со­став­ля­ет 340 руб­лей в месяц. В сле­ду­ю­щем году она уве­ли­чит­ся на 2%. Сколь­ко придётся пла­тить еже­ме­сяч­но за те­ле­фон в сле­ду­ю­щем году?

23. В пе­ри­од рас­про­да­жи ма­га­зин сни­жал цены два­жды: в пер­вый раз на 30%, во вто­рой — на 45%. Сколь­ко руб­лей стал сто­ить чай­ник после вто­ро­го сни­же­ния цен, если до на­ча­ла рас­про­да­жи он стоил 1400 р.?

24. На пред­при­я­тии ра­бо­та­ло 240 со­труд­ни­ков. После мо­дер­ни­за­ции про­из­вод­ства их число со­кра­ти­лось до 192. На сколь­ко про­цен­тов со­кра­ти­лось число со­труд­ни­ков пред­при­я­тия?

25. В на­ча­ле 2010 г. в по­сел­ке было 730 жителей, а в на­ча­ле 2011 г. их стало 803. На сколь­ко про­цен­тов уве­ли­чи­лось число жи­те­лей по­сел­ка за год?

26. После уцен­ки те­ле­ви­зо­ра его новая цена со­ста­ви­ла 0,52 ста­рой. На сколь­ко про­цен­тов умень­ши­лась цена те­ле­ви­зо­ра в ре­зуль­та­те уцен­ки?

27. Число до­рож­но-транс­порт­ных про­ис­ше­ствий в лет­ний пе­ри­од со­ста­ви­ло 0,71 их числа в зим­ний пе­ри­од. На сколь­ко про­цен­тов умень­ши­лось число до­рож­но-транс­порт­ных про­ис­ше­ствий летом по срав­не­нию с зимой?

28. В на­ча­ле учеб­но­го года в школе было 1250 учащихся, а к концу года их стало 950. На сколь­ко про­цен­тов умень­ши­лось за год число учащихся?

29. Клуб­ни­ка стоит 180 руб­лей за ки­ло­грамм, а ви­но­град – 160 руб­лей за ки­ло­грамм. На сколь­ко про­цен­тов клуб­ни­ка до­ро­же ви­но­гра­да?

30. Ма­га­зин де­ла­ет пен­си­о­не­рам скид­ку на опре­делённое ко­ли­че­ство про­цен­тов от сто­и­мо­сти по­куп­ки. Де­ся­ток яиц стоит в ма­га­зи­не 35 руб­лей, а пен­си­о­нер за­пла­тил за них 33 рубля 25 ко­пе­ек. Сколь­ко про­цен­тов со­став­ля­ет скид­ка для пен­си­о­не­ра?

31. Ма­га­зин дет­ских то­ва­ров за­ку­па­ет по­гре­муш­ку по опто­вой цене 260 руб­лей за одну штуку и продаёт с 40-про­цент­ной на­цен­кой. Сколь­ко будут сто­ить 3 такие по­гре­муш­ки, куп­лен­ные в этом ма­га­зи­не?

32. Суточная норма по­треб­ле­ния ви­та­ми­на С для взрос­ло­го че­ло­ве­ка со­став­ля­ет 60 мг. Один по­ми­дор в сред­нем со­дер­жит 17 мг ви­та­ми­на С. Сколько  про­цен­тов су­точ­ной нормы ви­та­ми­на С по­лу­чил человек, съев­ший один помидор? Ответ округ­ли­те до целых.

33. В го­ро­де 190 000 жи­те­лей, при­чем 29% – это пен­си­о­не­ры. Сколь­ко при­мер­но че­ло­век со­став­ля­ет эта ка­те­го­рия жи­те­лей? Ответ округ­ли­те до тысяч.

Разные задачи

1. Перед пред­став­ле­ни­ем в цирк для про­да­жи было за­го­тов­ле­но некоторое ко­ли­че­ство шариков. Перед на­ча­лом представления было про­да­но   всех воз­душ­ных шариков, а в ан­трак­те – еще 12 штук. После этого оста­лась половина всех шариков. Сколь­ко шариков было первоначально?

2. На мно­го­пред­мет­ной олим­пиа­де   всех участ­ни­ков по­лу­чи­ли дипломы,   осталь­ных участ­ни­ков были на­граж­де­ны по­хваль­ны­ми грамотами, а осталь­ные 144 че­ло­ве­ка по­лу­чи­ли сер­ти­фи­ка­ты об участии. Сколь­ко че­ло­век участ­во­ва­ло в олимпиаде?

3. На скла­де есть ко­роб­ки с руч­ка­ми двух цветов: чёрные и синие. Ко­ро­бок с чёрными руч­ка­ми 4, с синими — 11. Сколь­ко всего ручек на складе, если чёрных ручек 640, ко­роб­ки оди­на­ко­вые и в каж­дой ко­роб­ке на­хо­дят­ся ручки толь­ко од­но­го цвета?

4. На мо­лоч­ном за­во­де па­ке­ты мо­ло­ка упа­ко­вы­ва­ют­ся по 12 штук в коробку, причём в каж­дой ко­роб­ке все па­ке­ты одинаковые. В пар­тии молока, от­прав­ля­е­мой в ма­га­зин «Уголок», ко­ро­бок с по­лу­то­ра­лит­ро­вы­ми па­ке­та­ми мо­ло­ка втрое меньше, чем ко­ро­бок с лит­ро­вы­ми пакетами. Сколь­ко лит­ров мо­ло­ка в этой партии, если ко­ро­бок с лит­ро­вы­ми па­ке­та­ми мо­ло­ка 45?

5. За 20 минут ве­ло­си­пе­дист про­ехал 7 ки­ло­мет­ров. Сколь­ко ки­ло­мет­ров он про­едет за 35 минут, если будет ехать с той же ско­ро­стью?

6. Принтер пе­ча­та­ет одну стра­ни­цу за 12 секунд. Сколь­ко стра­ниц можно на­пе­ча­тать на этом прин­те­ре за 8 минут?

7. Рас­сто­я­ние от Солн­ца до Юпи­те­ра равно 779 000 000 км. Сколь­ко вре­ме­ни идёт свет от Солн­ца до Юпи­те­ра? Ско­рость света равна 300 000 км/с. Ответ дайте в ми­ну­тах и округ­ли­те до де­ся­тых.

8. Мас­штаб карты 1:100 000. Чему равно рас­сто­я­ние между го­ро­да­ми A и B (в км), если на карте оно со­став­ля­ет 2 см?

9. Рас­сто­я­ние от Солн­ца до Неп­ту­на свет про­хо­дит при­мер­но за 252,95 ми­ну­ты. Най­ди­те при­бли­зи­тель­но рас­сто­я­ние от Солн­ца до Неп­ту­на, ответ округ­ли­те до мил­ли­о­нов км. Ско­рость света равна 300 000 км/с.

10. Из объ­яв­ле­ния фирмы, про­во­дя­щей обу­ча­ю­щие се­ми­на­ры:

«Сто­и­мость уча­стия в се­ми­на­ре — 3000 р. с че­ло­ве­ка. Груп­пам от ор­га­ни­за­ций предо­став­ля­ют­ся скид­ки: от 3 до 10 че­ло­век — 5%; более 10 че­ло­век — 8%».

Сколь­ко руб­лей долж­на за­пла­тить ор­га­ни­за­ция, на­пра­вив­шая на се­ми­нар груп­пу из 4 че­ло­век?

11. Поезд, дви­га­ясь рав­но­мер­но со ско­ро­стью 150 км/ч, про­ез­жа­ет мимо стол­ба за 6 се­кунд. Най­ди­те длину по­ез­да в мет­рах.

12. В на­ча­ле года число або­нен­тов те­ле­фон­ной ком­па­нии «Восток» со­став­ля­ло 800 тыс. человек, а в конце года их стало 880 тыс. человек. На сколь­ко про­цен­тов уве­ли­чи­лось за год число або­нен­тов этой компании?

13. Поезд, дви­га­ясь рав­но­мер­но со ско­ро­стью 150 км/ч, про­ез­жа­ет мимо стол­ба за 18 се­кунд. Най­ди­те длину по­ез­да в мет­рах.

Статистика, теоремы о вероятностных событиях

1. За­пи­сан рост (в сан­ти­мет­рах) пяти уча­щих­ся: 158, 166, 134, 130, 132. На сколь­ко от­ли­ча­ет­ся сред­нее ариф­ме­ти­че­ское этого на­бо­ра чисел от его ме­ди­а­ны?

2. Фирма «Вспышка» из­го­тав­ли­ва­ет фонарики. Ве­ро­ят­ность того, что слу­чай­но вы­бран­ный фо­на­рик из пар­тии бракованный, равна 0,02. Ка­ко­ва ве­ро­ят­ность того, что два слу­чай­но вы­бран­ных из одной пар­тии фо­на­ри­ка ока­жут­ся небракованными?

3. Сред­ний рост жи­те­ля го­ро­да, в ко­то­ром живет Даша, равен 170 см. Рост Даши 173 см. Какое из сле­ду­ю­щих утвер­жде­ний верно?

1) Даша — самая вы­со­кая де­вуш­ка в го­ро­де.

2) Обя­за­тель­но най­дет­ся де­вуш­ка ниже 170 см.

3) Обя­за­тель­но най­дет­ся че­ло­век ро­стом менее 171 см.

4) Обя­за­тель­но най­дет­ся че­ло­век ро­стом 167 см.

4. Из­вест­но, что в не­ко­то­ром ре­ги­о­не ве­ро­ят­ность того, что ро­див­ший­ся мла­де­нец ока­жет­ся маль­чи­ком, равна 0,512. В 2010 г. в этом ре­ги­о­не на 1000 ро­див­ших­ся мла­ден­цев в сред­нем при­ш­лось 477 де­во­чек. На­сколь­ко ча­сто­та рож­де­ния де­воч­ек в 2010 г. в этом ре­ги­о­не от­ли­ча­ет­ся от ве­ро­ят­но­сти этого со­бы­тия?

5. Ве­ро­ят­ность того, что новая ша­ри­ко­вая ручка пишет плохо (или не пишет), равна 0,19. По­ку­па­тель в ма­га­зи­не вы­би­ра­ет одну такую ручку. Най­ди­те ве­ро­ят­ность того, что эта ручка пишет хо­ро­шо.

6. На эк­за­ме­не по гео­мет­рии школь­ни­ку достаётся одна за­да­ча из сбор­ни­ка. Ве­ро­ят­ность того, что эта за­да­ча по теме «Углы», равна 0,1. Ве­ро­ят­ность того, что это ока­жет­ся за­да­ча по теме «Па­рал­ле­ло­грамм», равна 0,6. В сбор­ни­ке нет задач, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся за­да­ча по одной из этих двух тем.

7. Игральную кость бро­са­ют дважды. Най­ди­те ве­ро­ят­ность того, что сумма двух вы­пав­ших чисел равна 4 или 7.

Классические вероятности

1. На экзамене 25 билетов, Сергей не выучил 3 из них. Найдите вероятность того, что ему попадётся выученный билет.

2. Коля вы­би­ра­ет трех­знач­ное число. Най­ди­те ве­ро­ят­ность того, что оно де­лит­ся на 5.

3. Телевизор у Маши сло­мал­ся и по­ка­зы­ва­ет толь­ко один слу­чай­ный канал. Маша вклю­ча­ет телевизор. В это время по трем ка­на­лам из два­дца­ти по­ка­зы­ва­ют кинокомедии. Най­ди­те ве­ро­ят­ность того, что Маша по­па­дет на канал, где ко­ме­дия не идет.

4. На та­рел­ке 12 пирожков: 5 с мясом, 4 с ка­пу­стой и 3 с вишней. На­та­ша на­у­гад вы­би­ра­ет один пирожок. Най­ди­те ве­ро­ят­ность того, что он ока­жет­ся с вишней.

5. В фирме такси в дан­ный мо­мент сво­бод­но 20 машин: 9 черных, 4 жел­тых и 7 зеленых. По вы­зо­ву вы­еха­ла одна из машин, слу­чай­но ока­зав­ша­я­ся ближе всего к заказчику. Най­ди­те ве­ро­ят­ность того, что к нему при­е­дет жел­тое такси.

6. В каж­дой де­ся­той банке кофе со­глас­но усло­ви­ям акции есть приз. Призы рас­пре­де­ле­ны по бан­кам случайно. Варя по­ку­па­ет банку кофе в на­деж­де вы­иг­рать приз. Най­ди­те ве­ро­ят­ность того, что Варя не най­дет приз в своей банке.

7. Миша с папой ре­ши­ли по­ка­тать­ся на ко­ле­се обозрения. Всего на ко­ле­се два­дцать че­ты­ре кабинки, из них 5 — синие, 7 — зеленые, остальные — красные. Ка­бин­ки по оче­ре­ди под­хо­дят к плат­фор­ме для посадки. Най­ди­те ве­ро­ят­ность того, что Миша про­ка­тит­ся в крас­ной кабинке.

8. У ба­буш­ки 20 чашек: 5 с крас­ны­ми цветами, осталь­ные с синими. Ба­буш­ка на­ли­ва­ет чай в слу­чай­но вы­бран­ную чашку. Най­ди­те ве­ро­ят­ность того, что это будет чашка с си­ни­ми цветами.

9. Родительский ко­ми­тет за­ку­пил 25 паз­лов для по­дар­ков детям на окон­ча­ние года, из них 15 с ма­ши­на­ми и 10 с ви­да­ми городов. По­дар­ки рас­пре­де­ля­ют­ся слу­чай­ным образом. Най­ди­те ве­ро­ят­ность того, что Толе до­ста­нет­ся пазл с машиной.

10. В сред­нем из каж­дых 80 по­сту­пив­ших в про­да­жу ак­ку­му­ля­то­ров 76 ак­ку­му­ля­то­ров заряжены. Най­ди­те ве­ро­ят­ность того, что куп­лен­ный ак­ку­му­ля­тор не заряжен.

11. Для эк­за­ме­на под­го­то­ви­ли би­ле­ты с но­ме­ра­ми от 1 до 50. Ка­ко­ва ве­ро­ят­ность того, что на­у­гад взя­тый уче­ни­ком билет имеет од­но­знач­ный номер?

12. В мешке со­дер­жат­ся же­то­ны с но­ме­ра­ми от 5 до 54 включительно. Ка­ко­ва вероятность, того, что из­вле­чен­ный на­у­гад из мешка жетон со­дер­жит дву­знач­ное число?

13. В денежно-вещевой ло­те­рее на 100 000 би­ле­тов разыг­ры­ва­ет­ся 1300 ве­ще­вых и 850 де­неж­ных выигрышей. Ка­ко­ва ве­ро­ят­ность по­лу­чить ве­ще­вой выигрыш?

14. Из 900 новых флеш-карт в сред­нем 54 не при­год­ны для записи. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ная флеш-карта при­год­на для записи?

15. В чем­пи­о­на­те по фут­бо­лу участ­ву­ют 16 команд, ко­то­рые же­ре­бьев­кой рас­пре­де­ля­ют­ся на 4 группы: A, B, C и D. Ка­ко­ва ве­ро­ят­ность того, что ко­ман­да Рос­сии не по­па­да­ет в груп­пу A?

16. В груп­пе из 20 рос­сий­ских ту­ри­стов не­сколь­ко че­ло­век вла­де­ют ино­стран­ны­ми языками. Из них пя­те­ро го­во­рят толь­ко по-английски, трое толь­ко по-французски, двое по-французски и по-английски. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ный ту­рист го­во­рит по-французски?

17. В ко­роб­ке 14 па­ке­ти­ков с чёрным чаем и 6 па­ке­ти­ков с зелёным чаем. Павел на­у­гад вы­ни­ма­ет один пакетик. Ка­ко­ва ве­ро­ят­ность того, что это па­ке­тик с зелёным чаем?

18. Стас, Денис, Костя, Маша, Дима бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру долж­на будет девочка.

19. Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет монетку, чтобы определить, какая из ко­манд будет пер­вой вла­деть мячом. Ко­ман­да А долж­на сыг­рать два матча — с ко­ман­дой В и с ко­ман­дой С. Най­ди­те ве­ро­ят­ность того, что в обоих мат­чах пер­вой мячом будет вла­деть ко­ман­да А.

20. В лыж­ных гон­ках участ­ву­ют 11 спортс­ме­нов из Рос­сии, 6 спортс­ме­нов из Нор­ве­гии и 3 спортс­ме­на из Шве­ции. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен из Рос­сии.

21. В лыж­ных гон­ках участ­ву­ют 11 спортс­ме­нов из Рос­сии, 6 спортс­ме­нов из Нор­ве­гии и 3 спортс­ме­на из Шве­ции. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен не из Рос­сии.

22. Из каж­дых 1000 элек­три­че­ских лам­по­чек 5 бракованных. Ка­ко­ва ве­ро­ят­ность ку­пить ис­прав­ную лампочку?

23. Петя, Вика, Катя, Игорь, Антон, По­ли­на бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру дол­жен будет мальчик.

24. Из 1600 па­ке­тов мо­ло­ка в сред­нем 80 про­те­ка­ют. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ный пакет мо­ло­ка не течёт?

25. В со­рев­но­ва­ни­ях по ху­до­же­ствен­ной гим­на­сти­ке участ­ву­ют три гим­наст­ки из Рос­сии, три гим­наст­ки из Укра­и­ны и че­ты­ре гим­наст­ки из Бе­ло­рус­сии. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что пер­вой будет вы­сту­пать гим­наст­ка из Рос­сии.

26. Опре­де­ли­те ве­ро­ят­ность того, что при бро­са­нии иг­раль­но­го ку­би­ка (пра­виль­ной кости) вы­па­дет не­чет­ное число очков.

27. Опре­де­ли­те ве­ро­ят­ность того, что при бро­са­нии ку­би­ка вы­па­ло число очков, не боль­шее 3.

28. Задание 9 № 325482

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно 1 раз.

29. Иг­раль­ную кость бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что оба раза вы­па­ло число, боль­шее 3.

30. Стре­лок 4 раза стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,5. Най­ди­те ве­ро­ят­ность того, что стре­лок пер­вые 3 раза попал в ми­ше­ни, а по­след­ний раз про­мах­нул­ся.

31. В таб­ли­це пред­став­ле­ны ре­зуль­та­ты четырёх стрел­ков, по­ка­зан­ные ими на тре­ни­ров­ке.

 

Номер

стрелка

Число

выстрелов

Число

попаданий

1

42

28

2

70

20

3

54

45

4

46

42

 

Тре­нер решил по­слать на со­рев­но­ва­ния того стрел­ка, у ко­то­ро­го от­но­си­тель­ная ча­сто­та по­па­да­ний выше. Кого из стрел­ков вы­бе­рет тре­нер? Ука­жи­те в от­ве­те его номер.

32. В ма­га­зи­не канц­то­ва­ров продаётся 100 ручек, из них 37 – крас­ные, 8 – зелёные, 17 – фи­о­ле­то­вые, ещё есть синие и чёрные, их по­ров­ну. Най­ди­те ве­ро­ят­ность того, что Алиса на­у­гад вы­та­щит крас­ную или чёрную ручку.

33. В сред­нем из 100 кар­ман­ных фонариков, по­сту­пив­ших в продажу, во­семь неисправных. Най­ди­те ве­ро­ят­ность того, что вы­бран­ный на­уда­чу в ма­га­зи­не фо­на­рик ока­жет­ся исправен.

Вычисление по формуле

1. В фирме «Эх, прокачу!» сто­и­мость поездки на такси (в рублях) рас­счи­ты­ва­ет­ся по фор­му­ле  , где   — дли­тель­ность поездки, вы­ра­жен­ная в ми­ну­тах  . Поль­зу­ясь этой формулой, рас­счи­тай­те стоимость 8-минутной поездки.

2. Площадь па­рал­ле­ло­грам­ма   можно вы­чис­лить по фор­му­ле  , где   — сто­ро­ны параллелограмма (в метрах). Поль­зу­ясь этой формулой, най­ди­те площадь параллелограмма, если его сто­ро­ны 10 м и 12 м и  .

3. В фирме «Чистая вода» сто­и­мость (в рублях) ко­лод­ца из же­ле­зо­бе­тон­ных колец рас­счи­ты­ва­ет­ся по фор­му­ле   , где    — число колец, уста­нов­лен­ных при рытье колодца. Поль­зу­ясь этой формулой, рас­счи­тай­те стоимость ко­лод­ца из 11 колец.

4. Зная длину сво­е­го шага, че­ло­век может приближённо под­счи­тать пройденное им рас­сто­я­ние s по фор­му­ле s = nl, где n — число шагов, l — длина шага. Какое рас­сто­я­ние прошёл человек, еслиl = 80 см, n = 1600? Ответ вы­ра­зи­те в километрах.

5. Расстояние s (в метрах) до места удара мол­нии можно приближённо вы­чис­лить по фор­му­леs = 330t, где t — ко­ли­че­ство секунд, про­шед­ших между вспыш­кой молнии и уда­ром грома. Определите, на каком рас­сто­я­нии от места удара мол­нии находится наблюдатель, если t = 10 с. Ответ дайте в километрах, округ­лив его до целых.

6. Из фор­му­лы цен­тро­стре­ми­тель­но­го уско­ре­ния a = ω2R най­ди­те R (в метрах), если ω = 4 с−1 и a = 64 м/с2.

Разные задачи

1. Период ко­ле­ба­ния математического ма­ят­ни­ка   (в секундах) при­бли­жен­но можно вы­чис­лить по фор­му­ле  , где   — длина нити (в метрах). Поль­зу­ясь этой формулой, най­ди­те длину нити ма­ят­ни­ка (в метрах), пе­ри­од колебаний ко­то­ро­го составляет 3 секунды.

2. Радиус опи­сан­ной около тре­уголь­ни­ка окружности можно найти по фор­му­ле   , где    — сто­ро­на треугольника,    — про­ти­во­ле­жа­щий этой сто­ро­не угол, а    — ра­ди­ус описанной около этого тре­уголь­ни­ка окружности. Поль­зу­ясь этой формулой, най­ди­те   , если   , а   .

3. Длину бис­сек­три­сы треугольника, проведённой к сто­ро­не   , можно вы­чис­лить по фор­му­ле   . Вы­чис­ли­те   ,  если   .

4. За 20 минут ве­ло­си­пе­дист про­ехал 7 ки­ло­мет­ров. Сколь­ко ки­ло­мет­ров он про­едет за t минут, если будет ехать с той же ско­ро­стью? За­пи­ши­те со­от­вет­ству­ю­щее вы­ра­же­ние.

Линейные уравнения

1. Длину окружности    можно вы­чис­лить по фор­му­ле  , где   — ра­ди­ус окружности (в метрах). Поль­зу­ясь этой формулой, най­ди­те радиус окружности, если её длина равна 78 м. (Считать  ).

2. Площадь ромба     можно вы­чис­лить по фор­му­ле   , где     — диа­го­на­ли ромба (в метрах). Поль­зу­ясь этой формулой, най­ди­те диагональ   , если диа­го­наль     равна 30 м, а пло­щадь ромба 120 м2.

3. Площадь тре­уголь­ни­ка     можно вы­чис­лить по фор­му­ле   , где    — сто­ро­на треугольника,    — высота, про­ве­ден­ная к этой сто­ро­не (в метрах). Поль­зу­ясь этой формулой, най­ди­те сторону   , если пло­щадь треугольника равна   , а вы­со­та     равна 14 м.

4. Площадь тра­пе­ции     можно вы­чис­лить по фор­му­ле   , где    — ос­но­ва­ния трапеции,    — вы­со­та (в метрах). Поль­зу­ясь этой формулой, най­ди­те высоту   , если ос­но­ва­ния трапеции равны     и   , а её пло­щадь   .

5. Радиус впи­сан­ной в пря­мо­уголь­ный тре­уголь­ник окруж­но­сти можно найти по фор­му­ле   , где     и     — катеты, а    — ги­по­те­ну­за треугольника. Поль­зу­ясь этой формулой, най­ди­те   , если     и   .

6. Объём пи­ра­ми­ды вычисляют по фор­му­ле   , где    — пло­щадь основания пирамиды,    — её высота. Объём пи­ра­ми­ды равен 40, пло­щадь основания 15. Чему равна вы­со­та пирамиды?

7. Площадь лю­бо­го вы­пук­ло­го че­ты­рех­уголь­ни­ка можно вы­чис­лять по фор­му­ле   , где    — длины его диагоналей, а     угол между ними. Вы­чис­ли­те   , если   .

8. Чтобы пе­ре­ве­сти зна­че­ние тем­пе­ра­ту­ры по шкале Цель­сия (t °C) в шкалу Фа­рен­гей­та (t °F), поль­зу­ют­ся фор­му­лой F = 1,8C + 32 , где C — гра­ду­сы Цельсия, F — гра­ду­сы Фаренгейта. Какая тем­пе­ра­ту­ра по шкале Цель­сия со­от­вет­ству­ет 6° по шкале Фаренгейта? Ответ округ­ли­те до десятых.

9. Центростремительное уско­ре­ние при дви­же­нии по окруж­но­сти (в м/c2 ) можно вы­чис­лить по фор­му­ле   где   — уг­ло­вая ско­рость (в с−1), а R — ра­ди­ус окружности. Поль­зу­ясь этой формулой, най­ди­те рас­сто­я­ние R (в метрах), если уг­ло­вая ско­рость равна 3 с−1, а цен­тро­стре­ми­тель­ное уско­ре­ние равно 45 м/c2.

10. Из за­ко­на все­мир­но­го тя­го­те­ния   вы­ра­зи­те массу   и най­ди­те её ве­ли­чи­ну (в килограммах), если       и гра­ви­та­ци­он­ная по­сто­ян­ная 

11. Полную ме­ха­ни­че­скую энер­гию тела (в джоулях) можно вы­чис­лить по фор­му­ле   где   — масса тела (в килограммах),   — его ско­рость (в м/с),   — вы­со­та по­ло­же­ния цен­тра масс тела над про­из­воль­но вы­бран­ным ну­ле­вым уров­нем (в метрах), а   — уско­ре­ние сво­бод­но­го па­де­ния (в м/с2). Поль­зу­ясь этой формулой, най­ди­те   (в метрах), если       а 

12. Мощ­ность по­сто­ян­но­го тока (в ват­тах) вы­чис­ля­ет­ся по фор­му­ле P = I2R, где I — сила тока (в ам­пе­рах), R — со­про­тив­ле­ние (в омах). Поль­зу­ясь этой фор­му­лой, най­ди­те со­про­тив­ле­ние R (в омах), если мощ­ность со­став­ля­ет 150 ватт, а сила тока равна 5 ам­пе­рам.

13. Закон Ку­ло­на можно за­пи­сать в виде   где   — сила вза­и­мо­дей­ствия за­ря­дов (в нью­то­нах),   и   — ве­ли­чи­ны за­ря­дов (в ку­ло­нах),   — ко­эф­фи­ци­ент про­пор­ци­о­наль­но­сти (в Н·м2/Кл2 ), а   — рас­сто­я­ние между за­ря­да­ми (в мет­рах). Поль­зу­ясь фор­му­лой, най­ди­те ве­ли­чи­ну за­ря­да  (в ку­ло­нах), если   Н·м2/Кл2,   Кл,   м, а   Н.

14. Закон все­мир­но­го тя­го­те­ния можно за­пи­сать в виде   где   — сила при­тя­же­ния между те­ла­ми (в нью­то­нах),   и   — массы тел (в килограммах),   — рас­сто­я­ние между цен­тра­ми масс (в мет­рах), а   — гра­ви­та­ци­он­ная постоянная, рав­ная 6.67 · 10−11 H·м2/кг2. Поль­зу­ясь фор­му­лой, най­ди­те массу тела   (в килограммах), если   Н,   кг, а   м.

15. Закон Джоуля–Ленца можно за­пи­сать в виде Q = I2Rt, где Q — ко­ли­че­ство теп­ло­ты (в джоулях),I — сила тока (в амперах), R — со­про­тив­ле­ние цепи (в омах), а t — время (в секундах). Поль­зу­ясь этой формулой, най­ди­те время t (в секундах), если Q = 2187 Дж, I = 9 A, R = 3 Ом.

16. Задание 13 № 338238

Площадь четырёхугольника можно вы­чис­лить по фор­му­ле   где   и   — длины диа­го­на­лей четырёхугольника,   — угол между диагоналями. Поль­зу­ясь этой формулой, най­ди­те длину диа­го­на­ли   если     a 

17. Закон Менделеева-Клапейрона можно за­пи­сать в виде PV = νRT, где P — дав­ле­ние (в паскалях),V — объём (в м3), ν — ко­ли­че­ство ве­ще­ства (в молях), T — тем­пе­ра­ту­ра (в гра­ду­сах Кельвина), а R — уни­вер­саль­ная га­зо­вая постоянная, рав­ная 8,31 Дж/(К⋅моль). Поль­зу­ясь этой формулой, най­ди­те тем­пе­ра­ту­ру T (в гра­ду­сах Кельвина), если ν = 68,2 моль, P = 37 782,8 Па, V = 6 м3.

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки