- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- «Специфика работы с детьми-мигрантами дошкольного возраста»
- «Нормативно-правовое обеспечение работы социального педагога образовательного учреждения»
- «Организационные аспекты работы педагога-психолога ДОУ»
- «Ранний детский аутизм»
- «Специальная психология»
- «Психолого-педагогическое сопровождение процесса адаптации детей-мигрантов в образовательной организации»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Методическая разработка урока по теме: "Преобразование тригонометрических выражений"
Цель: повторить, обобщить и систематизировать знания по теме «Формулы тригонометрии».
Задачи:
1. Развивать познавательный интерес к изучению математики.
2. Активизировать навыки самостоятельной работы.
3. Вырабатывать умение работать в коллективе, воспитывать ответственность, аккуратность.
Автономное учреждение
профессионального образования
Ханты – Мансийского автономного округа - Югры
«СУРГУТСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»
МЕТОДИЧЕСКАЯ РАЗРАБОТКА УРОКА ПО МАТЕМАТИКЕ
«Преобразование тригонометрических выражений»
Цель:Повторить, обобщить и систематизировать знания по теме «Формулы тригонометрии».
Задачи:
Развивать познавательный интерес к изучению математики.
Активизировать навыки самостоятельной работы.
Вырабатывать умение работать в коллективе, воспитывать ответственность, аккуратность.
.
Тип урока: урок обобщения и систематизации знаний.
Организационные формы общения: индивидуальная, групповая, коллективная.
Материально-техническое оснащение: мультимедийное оборудование (слайды – презентации), раздаточный материал.
План урока:
Организационный момент (2-3мин.)
Актуализация опорных знаний(15-20мин)
Блиц-опрос на знание тригонометрических формул и тождеств.
Самостоятельная работа в форме теста, с последующей самопроверкой (5-7 мин)
Закрепление знаний и умений (30-35 мин)
Работа по карточкам, индивидуальная работа у доски
Это интересно (4-5 мин)
История зарождения тригонометрии, тригонометрия в ладони, тригонометрия в архитектуре и физике.
Подведение итогов (2-3 мин)
Рефлексия(2 мин)
Домашнее задание: стр. 166 «Проверь себя!» (1 мин)
Организационный момент (2-3мин.)
Французский писатель Анатоль Франс однажды заметил:
«Учиться можно только весело… Чтобы переварить знания, надо поглощать их с аппетитом». Давайте будем следовать этому совету писателя, будем активны, внимательны, всё будем делать с удовольствием и большим желанием.
Тема сегодняшнего урока«Преобразование тригонометрических выражений». Сформулируйте, пожалуйста, исходя из темы урока, цели урока (формулируют). (Слайд 2)
Повторяем, обобщаем, приводим в систему изученные виды, типы, методы и приёмы решения используя тригонометрические формулы.
Перед вами задача – показать свои знания и умения при использовании тригонометрических формул.
Сегодня мы проведем урок в форме игры. Вы разбиты на 4 команды. На столе каждой команды лежит бланк «ТАБЛИЦА РЕЗУЛЬТАТОВ» (Приложение 1). Вы должны определить ответственного за внесение результатов в этот бланк. По итогам урока каждый участник команды получит оценку, которую заработает ваша группа. А также индивидуальную оценку по количеству баллов, набранному самим обучающимся. План игры (Слайд 3):
Тур 1 «Разминка» - блиц-опрос (по формулам в форме математического диктанта);
Тур 2 «Проверь себя!» - индивидуальная тестовая работа с последующей самопроверкой;
Тур 3 «Мозговой штурм» - работа в группе (расшифровка слова);
Тур 4 «Конкурс капитанов» - работа у доски;
Тур 5 «Домашнее задание» - интересные факты по тригонометрии: из истории тригонометрии, тригонометрия в ладони, тригонометрия в архитектуре, тригонометрия в физике;
Подведение итогов.
Итак, начинаем нашу игру, желаю удачи!
Актуализация опорных знаний(15-20мин)
Тур 1. В этом туре каждой команде предлагается по 5 вопросов. Стоимость каждого вопроса 1 балл. Если участники команды не могут ответить на вопрос, то право ответа переходит участникам других команд по вытянутой руке. Не забываем заносить результаты в бланк. (Слайды 6-24). Подсчитываем количество набранных баллов в этом туре.
Самостоятельная работа в форме теста, с последующей самопроверкой (5-7 мин)
Тур 2. Сейчас вам предлагается индивидуальная работа в форме теста 6 вариантов (Приложение 2). По окончании работы вы самостоятельно произведете проверку по предложенным ответам. Количество набранных баллов необходимо занести в бланк «ТАБЛИЦА РЕЗУЛЬТАТОВ» напротив своей фамилии и подсчитать общую сумму баллов. (Слайд 26)
Время работы – 10 минут.
Закрепление знаний и умений (30-35 мин)
Тур 3.Теперь вы будете работать командой. Вам предлагается решить задания (Приложение 3) , чтобы расшифровать загаданное слово. Обращаю ваше внимание, напротив каждого задания указано количество баллов, и вам необходимо записать автора решения, чтобы потом перенести баллы в бланк «ТАБЛИЦА РЕЗУЛЬТАТОВ». По окончании работы капитаном будет предложен ключ для написания слова на доске (Слайд 28).
Время работы – 20 минут. Занесите, пожалуйста, количество набранных баллов в таблицу.
Тур 4. Капитаны команд приглашаются для работы у доски. Ребята вытягивают задания «Доказать тригонометрическое тождество» (Приложение 4), решают на доске.
В это время остальные участники команд могут заработать дополнительные баллы, поиграв в игру «Найди ошибку» (Слайд 30, 31). Стоимость каждого задания – 1балл. Не забываем вносить набранные баллы напротив своей фамилии в бланк результатов.
(По окончании решения у доски капитаны по очереди представляют своё решение, а все остальные ребята слушают и записывают в тетради решение).
Оценивание: 3 балла, если все правильно выполнено и обосновано;
2 балла, если допущены незначительные неточности;
1 балл, если задание выполнено, но допущены ошибки при решении;
баллов, если тождество не доказано.
Это интересно (4-5 мин)
Каждой команде было дано домашнее задание. Сейчас представитель выйдет и расскажет своё задание. Здесь команда заработает 1 балл.
Подведение итогов (2-3 мин)
Прошу подсчитать количество баллов каждого участника и общее количество баллов.
Если ваша группа набрала менее 20 баллов, то, увы ваша группа не получает оценку.
21-35 баллов – оценка «3»;
36-45 баллов – оценка «4»;
более 46 баллов – оценка «5».
(Подсчитываются баллы, озвучиваются оценки). Индивидуальные оценки я поставлю, когда просмотрю ваши бланки ответов.
Рефлексия(2 мин)
Хочу поблагодарить сегодня всех за работу и предлагаю каждому из вас закончить одно из предложений (Слайд 33):
Сегодня на уроке я повторил …
Сегодня на уроке я научился …
Мне необходимо еще поработать над …
Сегодня на уроке мне понравилось…
Домашнее задание: стр. 166 «Проверь себя!» (1 мин)
ПРИЛОЖЕНИЕ 1
ГРУППА № ___ ОБЩЕЕ КОЛИЧЕСТВО БАЛЛОВ:_______
№ п/п | Ф.И. студента | 1 тур «Разминка» | 2 тур «Проверь себя!» | 3 тур «Мозговой штурм» | 4 тур «Конкурс капитанов» | Доп. тур | Дом задание «Это интересно» | ИТОГО |
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 | ||||||||
6 | ||||||||
ИТОГ |
ПРИЛОЖЕНИЕ 2
Проверь Себя!
Вариант 1
А1. Градусная мера угла рад. равна…
А. 150 ; Б. 330 ; В. 210 ; Г. 420 .
А2. Точка тригонометрической окружности с абсциссой -1 соответствует
числу…
А. ; Б. ; В. ; Г. .
А3. Какая из точек, расположенных на
тригонометрической окружности,
может соответствовать числу ?
А.N; Б. M; В. P; Г.C
А4. Углом какой четверти является угол , равный 560 ?
А.I; Б. П; В. Ш; Г. IV.
А5. Число -2 может быть значением:
А) синуса некоторого угла; Б) косинуса некоторого угла;
В) тангенса некоторого угла; Г) котангенса некоторого угла.
А6. Установить соответствие между знаками выражений sin>0,cos>0
и соответствующими координатными четвертями:
А.I; Б. П; В. Ш; Г. IV
А7. Положительным числом является:
А. sin 193 ; Б. cos 293; В.tg 293 ; Г.сtg 293
А8. Установите соответствие между тригонометрическими выражениями:
а)sin; б) cos; в) tg; г) tg и их значениями:
А. 1; Б. 0; В.-1; Г. 0,5.
А9. Значение выражения 2sin30+ 2cos60+ tg60- ctg30равно:
А. 1; Б. 3; В. 0; Г. 2
А10.Вычислитеcos( ). А.; Б. ; В. ; Г. .
Вариант 2
А1. Радианная мера угла 270 равна…
А. ;Б. ; В. ; Г. .
А2. Число соответствует точке тригонометрической окружности с
абсциссой …
А. 1; Б. -1; В. 0; Г. .
А3. Какая из точек, расположенных на
тригонометрической окружности,
может соответствовать числу ?
А.N; Б. M; В. P; Г.C.
А4. Углом какой четверти является угол , равный ?
А.I; Б. П; В. Ш; Г. IV.
А5. Если sin=-1, то может принимать значения:
А. 180 ; Б. 90 ; В. -90 ; Г. -180
А6. Установить соответствие между знаками выражений sin>0,cos<0
и соответствующими координатными четвертями:
А.I; Б. П; В. Ш; Г. IV.
А7. Какое из следующих чисел является отрицательным?
А. sin 293Б. cos 293 В.tg 193 Г.сtg 193
А8. Установите соответствие между тригонометрическими выражениями:
а)cos; б) sin; в) tg; г) сtg и их значениями:
А. 1; Б. 0; В.-1; Г. 0,5.
А9. Значение выражения sin + cos - sin + tg равно:
А. 0,5; Б. ; В. 0; Г. 1,5.
А10. Вычислите sin( ).
А.; Б. ; В. ; Г. .
Вариант 3
А1. Градусная мера угла рад. равна…
А. 300 Б. 330 В. 600 Г. 150
А2. Точка тригонометрической окружности с ординатой 1 соответствует
числу…
А.; Б.; В. ; Г.0.
А3. Какая из точек, расположенных на
тригонометрической окружности,
может соответствовать числу ?
А.N; Б. M; В. P; Г.C.
А4. Углом какой четверти является угол , равный 510 ?
А.I; Б. П; В. Ш; Г. IV.
А5. Число 1 – наибольшее значение выражения:
А. sin ; Б. cos ; В.tg ; Г.ctg .
А6. Установить соответствие между знаками выражений sin<0,cos>0
и соответствующими координатными четвертями:
А.I; Б. П; В. Ш; Г. IV.
А7. Положительным числом является:
А. sin 293Б. cos 193 В.tg 193 Г.сtg 293
А8. Установите соответствие между тригонометрическими выражениями:
а)sin; б) cos; в) tg; г) сtg и их значениями:
А. 1; Б. 0; В. -0,5; Г. .
А9. Значение выражения 4sin30+ 2cos30- tg60+ 2sin60равно:
А. 5; Б. 4 ; В. 0; Г. 7.
А10. Вычислите tg( ).
А. 1; Б. ; В. ; Г. -1.
Вариант 4
А1. Радианная мера угла 240 равна…
А. ; Б. ; В. ; Г. .
А2. Число соответствует точке тригонометрической окружности с
ординатой…
А. 1; Б. -1; В. 0; Г. .
А3. Какая из точек, расположенных на
тригонометрической окружности,
может соответствовать числу ?
А.N; Б. M; В. P; Г.C.
А4. Углом какой четверти является угол , равный?
А.I; Б. П; В. Ш; Г. IV.
А5. Если cos=-1, то может принимать значения:
А. 180 Б. 90 В. -90 Г. 360
А6. Установить соответствие между знаками выражений sin<0,cos<0
и соответствующими координатными четвертями:
А.I; Б. П; В. Ш; Г. IV.
А7. Какое из следующих чисел является отрицательным?
А. sin 93 Б. cos 193 В.tg 193 Г.сtg 193
А8. Установите соответствие между тригонометрическими выражениями:
а)sin; б) cos; в) tg; г) сtg и их значениями:
А. 1; Б. 0; В.-1; Г. .
А9. Значение выражения 8sin + 2cos - tg + 5sin равно:
А.-1 ; Б. 4; В.4; Г.0 .
А10. Вычислите sin( ).
А.; Б. ; В. ; Г. .
Вариант 5
А1. Градусная мера угла рад равна….
А. 135 Б. 315 В. 225 Г. 210
А2. Точка тригонометрической окружности с ординатой -1 соответствует
числу…
А.; Б. ; В. ; Г. .
А3. Какая из точек, расположенных на
тригонометрической окружности,
может соответствовать числу ?
А.N; Б. M; В. P; Г.C.
А4. Углом какой четверти является угол
, равный 430 ?
А.I; Б. П; В. Ш; Г. IV.
А5. Если cos= 0, то может принимать значения:
А. 180 Б. 90 В. 360 Г. -180
А6. Установить соответствие между знаками выражений sin>0,tg>0
и соответствующими координатными четвертями:
А.I; Б. П; В. Ш; Г. IV.
А7. Положительным числом является:
А. sin 193 Б. cos 193 В.tg 293 Г.сtg 193
А8. Установите соответствие между тригонометрическими выражениями:
а)sin; б) cos; в) tg; г) сtg и их значениями:
А. 1; Б. 0; В.-1; Г. 0,5
А9. Значение выражения 2sin30+ 3cos0- 2tg45+ 7ctg270равно:
А. -1; Б. 9; В. 0; Г. 2.
А10. Вычислите sin( ).
А.; Б. ; В. ; Г. .
Вариант 6
А1. Радианная мера угла 300равна…
А.; Б. ; В. ; Г. .
А 2. Число соответствует точке тригонометрической окружности с
абсциссой …
А. -1; Б. 0; В. 1; Г. .
А3. Какая из точек, расположенных на
тригонометрической окружности,
может соответствовать числу ?
А.N; Б. M; В. P; Г. С.
А4. Углом какой четверти является угол , равный ?
А.I; Б. П; В. Ш; Г. IV.
А5. Число -1 – наименьшее значение выражения:
А. sin ; Б. cos ; В.tg ; Г.ctg .
А6. Установить соответствие между знаками выражений sin<0,tg>0
и соответствующими координатными четвертями:
А.I; Б. П; В. Ш; Г. IV.
А7. Какое из следующих чисел является отрицательным?
А. sin 173 Б. cos 293 В.tg 173 Г.сtg 193
А8. Установите соответствие между тригонометрическими выражениями:
а)sin; б) cos; в) tg; г) сtg и их значениями:
А. ; Б. 0; В.1; Г. 0,5.
А9. Значение выражения: 3sin+ 7cos- 8 tg + ctg равно:
А. 5; Б.-2 ; В. -6; Г.-9.
А10. Вычислите ctg( ).
А.; Б. ; В. ; Г. .
Критерии:
«3» - 5 верных ответов
«4» - 7 верных ответов
«5» - 9-10 верных ответов
ПРИЛОЖЕНИЕ 3
Группа №1
№ | Вопрос | Ваш | Кол-во баллов |
А1 | Значениечисла 2Пв градусах равно Автор решения:_____________________________ | 1 | |
А2 | Найдите значение выражения: 2sin- 2 cos+ 3 tq - ctq. Автор решения: ____________________________ | 2 | |
В3 | Известно,. Найдите: sin, если cos= - 0,6 Автор решения: ____________________________ | 3 | |
В4 | Вычислите Автор решения: ____________________________ | 3 | |
В5 | Упростите выражение Автор решения: ____________________________ | 4 | |
С6 | Найдите значение выражения Автор решения: ____________________________ | 5 |
С7 | Вычислите Автор решения: _______________________________ __________________________ | 5 |
Группа №2
№ | Вопрос | Ваш | Кол-во баллов |
А1 | Значение270о в радианах равно Автор решения:_____________________________ | 1 | |
А2 | Найдите значение выражения: 2sin - 3 tq + ctq (- ) – tq Автор решения:_____________________________ | 2 | |
А3 | Вычислите sin (+ α ) Автор решения:_____________________________ | 1 | |
В4 | Упростите выражение. Автор решения:_____________________________ | 3 | |
В5 | Вычислите Автор решения:_____________________________ | 3 | |
В6 | Вычислите Автор решения:_____________________________ | 4 | |
С7 | Известно,. Найдите: tq, если cos= - . Автор решения:_____________________________ | 4 | |
С8 | Преобразуйте выражение. Автор решения:_____________________________ | 5 |
Группа №3
№ | Вопрос | Ваш | Кол-во баллов |
А1 | ЗначениечислаПв градусах равно Автор решения: ____________________________ | 1 | |
А2 | Найдите значение выражения: sin (- ) + 3 cos - tq + ctq Автор решения: ____________________________ | 2 | |
А3 | Переведитеиз градусной меры в радианную 1200 Автор решения: ____________________________ | 1 | |
В4 | Известно,. Найдите: cos, если sin = Автор решения: ____________________________ | 3 | |
В5 | Вычислите coscos-sin sin Автор решения: ____________________________ | 3 | |
В6 | Вычислите | 3 | |
С7 | Вычислите | 5 | |
С8 | Найдите значение выражения. | 5 |
Группа №4
№ | Вопрос | Ваш | Кол-во баллов |
А1 | Значение180о в радианах равно Автор решения:_____________________________ | 1 | |
А2 | Найдите значение выражения: tq (- ) + 2 sin - 3 tq 0 – 2 ctq Автор решения:_____________________________ | 2 | |
А3 | Переведитеиз радианной меры в градусную Автор решения: ____________________________ | 1 | |
В4 | Известно,. Найдите: sin , если ctq= -2 Автор решения:_____________________________ | 3 | |
В5 | Вычислите sin 1120 × cos 220 - sin 220 × cos 1120 Автор решения:_____________________________ | 3 | |
В6 | Вычислите Автор решения:_____________________________ | 3 | |
С7 | Преобразуйте выражение. | 5 | |
С8 | Упростите выражение и найдите его значение при . | 5 |
Дополнительное задание
Вычислите:
2sin2α + 6 cos2α , если sinα = -0,2
cos(13,5π +α) + sin(-21– α), если sinα = -0,1
Докажите тождество:
Дополнительное задание
Вычислите:
2sin2α + 6 cos2α , если sinα = -0,2
cos(13,5π +α) + sin(-21– α), если sinα = -0,1
Докажите тождество:
Дополнительное задание
Вычислите:
2sin2α + 6 cos2α , если sinα = -0,2
cos(13,5π +α) + sin(-21– α), если sinα = -0,1
Докажите тождество:
Группа №1 | ||||||
3600 | 3 | 0,8 | -22 | |||
- р, – п, 3600– Г, 0,8 – п, 3 – и, - а, -22 – х
Группа №2 | |||||||
- | - | 1 | - | 0 | |||
- - х, - - а, - и,- - р, - А, 1 – б, 0 – т, - а
Группа №3 | |||||||
1800 | 1,5- | - | 0 | ||||
0 – о, 1,5- - т, - м, - о, - е, - й, 1800– П,
-– л
Группа №4 | |||||||
-3 | 2250 | 1 | 0 | 2 | |||
- е, -3 – о, 0 – и, - К, 2250– п, 1 – р, 2 – к, -н
ПРИЛОЖЕНИЕ 4
Докажите тождество
Докажите тождество
Докажите тождество
Докажите тождество
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/346989-metodicheskaja-razrabotka-uroka-po-teme-preob


БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Учебный курс «Вероятность и статистика»: содержание и специфика преподавания в условиях реализации ФГОС ООО и ФГОС СОО»
- «Обучение детей дошкольного возраста английскому языку в условиях реализации ФГОС ДО»
- «Основы сурдопедагогики»
- «Содержание и методы обучения младших школьников в условиях реализации ФГОС НОО от 2021 года»
- «Противодействие коррупции в образовательной организации»
- «Особенности разработки и реализации программ дополнительного образования детей»
- Педагогика и методика преподавания изобразительного искусства
- Педагогика и методика преподавания астрономии
- Мировая художественная культура: теория и методика преподавания в образовательной организации
- Педагог-библиотекарь в образовательной организации
- Реализация физического воспитания. Особенности организации адаптивной физической культуры для обучающихся с ОВЗ
- Педагогика и методика преподавания музыки в начальной и основной школе
Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.