- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Тема: «Задачи на построение сечений»
Цель урока: выработать навыки решения задач на построение сечений тетраэдра и параллелепипеда.
Урок 20. Тема: «Задачи на построение сечений»
Цель урока: выработать навыки решения задач на построение сечений тетраэдра и параллелепипеда.
Ход урока.
I. Организационный момент. II. Проверка домашнего задания. Ответы на вопросы 14, 15.
14. Существует ли тетраэдр, у которого пять углов граней прямые? (Ответ: Нет, так как граней всего 4, они являются треугольниками, а треугольника с двумя прямыми углами не существует.)
15. Существует ли параллелепипед, у которого: а) только одна грань - прямоугольник; б) только две смежные грани - ромбы; в) все углы граней острые; г) все углы граней прямые; д) число всех острых граней не равно числу всех тупых углов граней?
(Ответ: а) нет (противоположные грани равны); б) нет (по той же причине); в) нет (таких параллелограммов не существует); г) да (прямоугольный параллелепипед); д) нет (в каждой грани два острых и два тупых угла, либо все прямые.)
III. Изучение нового материала.
План:
1. Теоретическая часть.
2. Практическая часть (решение задачи № 1).
Учитель: 1) для решения многих геометрических задач, связанных с тетраэдром и параллелепипедом, полезно уметь строить на рисунке их сечения различными плоскостями. Под сечением будем понимать любую плоскость (назовем ее секущей плоскостью), по обе стороны от которой имеются точки данной фигуры (то есть тетраэдра или параллелепипеда). Секущая плоскость пересекает тетраэдр (параллелепипед) по отрезкам. Многоугольник, который будет образован этими отрезками, и является сечением фигуры. Так как тетраэдр имеет четыре грани, то его сечением могут быть треугольники и четырехугольники (рис. 1). Параллелепипед имеет шесть граней. Его сечением могут быть треугольники (рис. 2 а), четырехугольники (рис. 2 б), пятиугольники (рис. 2 в) и шестиугольники (рис. 2 г).
При построении сечения параллелепипеда учитываем тот факт, что если секущая плоскость пересекает две противоположные грани по каким-то отрезкам, то эти отрезки параллельны (свойство 1, п. 11: Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны). Более подробно с построением сечения параллелепипеда мы познакомимся на следующем уроке.
Для построения сечения достаточно построить точки пересечения секущей плоскости с ребрами тетраэдра (параллелепипеда), после чего остается провести отрезки, соединяющие каждые две построенные точки, лежащие в одной и той же грани.
2) Рассмотрим примеры построения различных сечений тетраэдра, для этого решим задачу: На ребрах АВ, BD и CD тетраэдра ABCD отмечены точки М, N, Р (рис. 3 а). Построить сечение тетраэдра плоскостью MNP.
Решение: Построим сначала прямую, по которой плоскость MNP пересекается с плоскостью грани ABC. Точка М является общей точкой этих плоскостей. Для построения еще одной общей точки продолжим отрезки NP и ВС до их пересечения в точке Е (рис. 3 б), которая и будет второй общей точкой плоскостей MNP и ABC. Следовательно, эти плоскости пересекаются по прямой ME. Прямая ME пересекает ребро АС в некоторой точке А. Четырехугольник MNPQ - искомое сечение.
Если прямые NP и ВС параллельны (рис. Зв), то прямая NP параллельна грани ABC, поэтому плоскость MNP пересекает эту грань по прямой ME, параллельной прямой NP. Точка Q, как и в предыдущем случае, есть точка пересечения ребра АС с прямой ME.
3) Работа у доски:
- Первый ученик: построить сечение тетраэдра DABC плоскостью, проходящей через данные точки MNK.
- Второй ученик: построить сечение тетраэдра МКРН плоскостью, проходящей через точки ABC. Найти периметр Сечения. Ребро тетраэдра равно а.
- Третий ученик (№ 105): Изобразите тетраэдрDABC и отметьте точки M и N на ребрах BD и CD и внутреннюю точку К грани ABC. Постройте сечение тетраэдра плоскостьюMNK.
Решение: Обозначим секущую плоскость буквой α. Тогда
Возможны два случая:
1°)MN ∩ ВС = Р; 2°) MN || BС. Рассмотрим их отдельно. 1°) Проводим прямую MN. Проводим прямую РК. Пусть она пересекает стороны АС и АВ в точках Е и F. Проводим отрезки NE и MF. Искомое сечение - четырехугольник MNEF(рис. 4).
2) Через точку К проводим EF || ВС. Проводим отрезки NE и MF. Искомое сечение - четырехугольник MNEF (рис. 5).
3) Работа по карточкам: (пока третий ученик работает у доски, 4 ученика работают по карточкам).
- построить сечение тетраэдра DABC плоскостью, проходящей через данные точки М, N, К. Найти периметр сечения. Ребро тетраэдра равно а (рис. 6).
- построить сечение тетраэдра DABC плоскостью, проходящей через данные точки М, N, К; NM || АС (рис. 7).
- построить сечение тетраэдра DABC плоскостью, проходящей через данные точки М, N, К. EKNM - искомое сечение (рис. 8).
- построить сечение тетраэдра DABC плоскостью, проходящей через данные точки М, N, К (рис. 9). KNME- искомое сечение.
IV. Подведение итогов урока. V. Домашнее задание: п. 14, стр. 27 № 104 - Вариант I, № 106 - Вариант II.
Задача 104
Решение: Проведем ME || АС и MF || BD. По теореме 2. (Через две пересекающие прямые проходит плоскость, и притом только одна) плоскость сечения пересечет плоскость BCD по прямой, параллельной MF (MF || плоскости BCD по построению), значит, проводим ЕК ||BD. Соединим точки К и F. Четырехугольник MEKF - искомое сечение. Докажем это. АС || плоскости MEF (так как АС || ME;ME ⊂MEF).BD || плоскости MEF (то есть BD || MF;MF ⊂MEF). Итак, плоскость MEKF || AC и плоскость MEKF || BD. Так как через точку М можно провести лишь одну прямую ME || АС в плоскости грани ABC и одну прямую MF || BD в плоскости грани BAD, то плоскость MEKF - единственная, удовлетворяющая условию задачи (рис. 10).
Задача 106
Решение: Пусть точки расположены так, как показано на рисунке 11. 1. Проводим KN до пересечения с продолжением ребра СА. Пусть KN пересечет СА в точке О. 2. Проводим луч ОМ; он пересечет ребро АВ в точке Е, а ребро ВС - в точке L. Соединим К и L,F и Е (точка F - точка пересечения KN с ребром DA). Сечение KFEL- искомое.
Построим:
1)KN до пересечения в точке F с ребром АС.
2)FM до пересечения с ребром АВ в точке Е и ребром ВС (его продолжением) в точке О.
3) ОК, он пересечет DB в точке L;
4) отрезок EL.
5)KFEL - искомое сечение (рис. 12).
ПроводимKN до пересечения с АС в точке F; продолжаем KN за точкой F до пересечения с продолжением DA в точке О; FM до пересечения с АВ в точке Е; ОЕ до пересечения с DB в точке L; отрезок KL.KFEL- искомое сечение (рис. 13).
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/443279-tema-zadachi-na-postroenie-sechenij
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Понятие буллинга, профилактика травли в образовательных организациях»
- «Разработка и реализация образовательных программ СПО в соответствии с ФГОС»
- «Использование современных педагогических технологий в работе воспитателя группы продленного дня»
- «Организация и содержание деятельности инструктора по физической культуре в ДОУ»
- «Цифровые инструменты и сервисы в профессиональной деятельности педагога»
- «ОГЭ по физике: содержание экзамена и технологии подготовки обучающихся в соответствии с ФГОС»
- Логопедия. Коррекционно-педагогическая работа по преодолению речевых нарушений у обучающихся младшего школьного возраста
- Содержание профессиональной деятельности старшего вожатого образовательной организации
- Педагогика и методика преподавания биологии
- Педагогика и методика преподавания географии
- Профессиональная деятельность методиста дошкольной образовательной организации
- Методика преподавания основ безопасности жизнедеятельности

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.