- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- «Специфика работы с детьми-мигрантами дошкольного возраста»
- «Учебный курс «Вероятность и статистика»: содержание и специфика преподавания в условиях реализации ФГОС ООО и ФГОС СОО»
- «Центр «Точка роста»: создание современного образовательного пространства в общеобразовательной организации»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Опорный конспект по материаловедению
Строение, свойства металлов и сплавов.
1. Конструкционные материалы
2. Кристаллическое строение металлов
3. Кристаллизация металлов
4. Строение сплавов. Диаграмма железо – углерод.
5. Свойства металлов и сплавов. Пластичность и прочность металлов
Тема 1.
Строение, свойства металлов и сплавов.
Конструкционные материалы
Кристаллическое строение металлов
Кристаллизация металлов
Строение сплавов. Диаграмма железо – углерод.
Свойства металлов и сплавов.Пластичность и прочность металлов.
Конструкционные материалы
Конструкционные материалы, материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами К. м. являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества К. м. относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Длительный период в своём развитии человеческое общество использовало для своих нужд (орудия труда и охоты, утварь, украшения и др.) ограниченный круг материалов: дерево, камень, волокна растительного и животного происхождения, обожжённую глину, стекло, бронзу, железо. Промышленный переворот 18 в. и дальнейшее развитие техники, особенно создание паровых машин и появление в конце 19 в. двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили и дифференцировали требования к материалам их деталей, которые стали работать при сложных знакопеременных нагрузках, повышенных температурах и др. Основой К. м. стали металлические сплавы на основе железа (чугуны и стали), меди (бронзы и латуни), свинца и олова.
При конструировании самолётов, когда главным требованием, предъявляемым к К. м., стала высокая удельная прочность, широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники потребовало создания новых жаропрочных сплавов на никелевой и кобальтовой основах, сталей, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах. Совершенствование техники на каждом этапе развития предъявляло новые, непрерывно усложнявшиеся требования к К. м. (температурная стойкость, износостойкость, электрическая проводимость и др.). Например, судостроению необходимы стали и сплавы с хорошей свариваемостью и высокой коррозионной стойкостью, а химическому машиностроению — с высокой и длительной стойкостью в агрессивных средах. Развитие атомной энергетики связано с применением К. м., обладающих не только достаточной прочностью и высокой коррозионной стойкостью в различных теплоносителях, но и удовлетворяющих новому требованию — малому поперечному сечению захвата нейтронов.
К. м. подразделяются: по природе материалов — на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и др. материалов; по технологическому исполнению — на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы — на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности — на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.
Отдельные классы К. м., в свою очередь, делятся на многочисленные группы. Например, металлические сплавы различают: по системам сплавов — алюминиевые, магниевые, титановые, медные, никелевые, молибденовые, ниобиевые, бериллиевые, вольфрамовые, на железной основе и др.; по типам упрочнения — закаливаемые, улучшаемые, стареющие, цементируемые, цианируемые, азотируемые и др.; по структурному составу — стали аустенитные и ферритные, латуни и т.д.
Неметаллические К. м. подразделяют по изомерному составу, технологическому исполнению (прессованные, тканые, намотанные, формованные и пр.), по типам наполнителей (армирующих элементов) и по характеру их размещения и ориентации. Некоторые К. м., например сталь и алюминиевые сплавы, используются как строительные материалы и, наоборот, в ряде случаев строительные материалы, например железобетон, применяются в конструкциях машиностроения.
Технико-экономические параметры К. м. включают: технологические параметры — обрабатываемость металлов давлением, резанием, литейные свойства (жидкотекучесть, склонность к образованию горячих трещин при литье), свариваемость, паяемость, скорость отверждения и текучесть полимерных материалов при нормальных и повышенных температурах и др.; показатели экономической эффективности (стоимость, трудоёмкость, дефицитность, коэффициент использования металла и т.п.).
К металлическим К. м. относится большинство выпускаемых промышленностью марок стали. Исключение составляют стали, не используемые в силовых элементах конструкций: инструментальные стали, для нагревательных элементов, для присадочной проволоки (при сварке) и некоторые другие с особыми физическими и технологическими свойствами. Стали составляют основной объём К. м., используемых техникой. Они отличаются широким диапазоном прочности — от 200 до 3000 Мн/м2(20—300 кгс/мм2),пластичность сталей достигает 80%, вязкость — 3 МДж/м2. Конструкционные (в т. ч. нержавеющие) стали выплавляются в конверторах, мартеновских и электрических печах. Для дополнительной рафинировки применяются продувка аргоном и обработка синтетическим шлаком в ковше. Стали ответственного назначения, от которых требуется высокая надёжность, изготовляются вакуумно-дуговым, вакуумно-индукционным и электрошлаковым переплавом, вакуумированием, а в особых случаях — улучшением кристаллизации (на установках непрерывной или полунепрерывной разливки) вытягиванием из расплава.
Чугуны широко применяются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительных средах, и др. Прочность чугунов в зависимости от легирования колеблется от 110 Мн/м2(чугаль) до 1350 Мн/м2 (легированный магниевый чугун).
Никелевые сплавы и кобальтовые сплавы сохраняют прочность до 1000—1100 °С. Выплавляются в вакуумно-индукционных и вакуумно-дуговых, а также в плазменных и электроннолучевых печах. Применяются в авиационных и ракетных двигателях, паровых турбинах, аппаратах, работающих в агрессивных средах, и др. Прочность алюминиевых сплавов составляет: деформируемых до 750 Мн/м2,литейных до 550 Мн/м2, по удельной жёсткости они значительно превосходят стали. Служат для изготовления корпусов самолётов, вертолётов, ракет, судов различного назначения и др. Магниевые сплавы отличаются высоким удельным объёмом (в 4 раза выше, чем у стали), имеют прочность до 400Мн/м2 и выше; применяются преимущественно в виде литья в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др. Титановые сплавыначинают успешно конкурировать в ряде отраслей техники со сталями и алюминиевыми сплавами, превосходя их по удельной прочности, коррозионной стойкости и по жёсткости. Сплавы имеют прочность до 1600 Мн/м2 и более. Применяются для изготовления компрессоров авиационных двигателей, аппаратов химической и нефтеперерабатывающей промышленности, медицинских инструментов и др.
К К. м. относятся также сплавы на основе меди, цинка, молибдена, циркония, хрома, бериллия, которые нашли применение в различных отраслях техники (см. Бериллиевые сплавы, Медноникелевые сплавы, Молибденовые сплавы).
Неметаллические К. м. включают пластики, термопластичные полимерные материалы (см. Полимеры),керамику, огнеупоры, стекла, резины, древесину. Пластики на основе термореактивных, эпоксидных, фенольных, кремнийорганических термопластичных смол и фторопластов, армированные (упрочнённые) стеклянными, кварцевыми, асбестовыми и др. волокнами, тканями и лентами, применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др. Термопластичные полимерные материалы — полистирол, полиметилметакрилат, полиамиды, фторопласты, а также реактопласты используют в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе химически активных: топливах, маслах и т.п.
Стекла (силикатные, кварцевые, органические), триплексы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений.
Развитие техники предъявляет новые, более высокие требования к существующим К. м., стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластикомпозволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы К. м., сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.
Т. к. в составе К. м. нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств К. м. связаны с синтезированием материалов из элементов, имеющих предельные значения свойств, например предельно прочных, предельно тугоплавких, термостабильных и т.п. Такие материалы составляют новый класс композиционных К. м. В них используются высокопрочные элементы (волокна, нити, проволока, нитевидные кристаллы, гранулы, дисперсные высокотвёрдые и тугоплавкие соединения, составляющие армировку или наполнитель), связуемые матрицей из пластичного и прочного материала (металлических сплавов или неметаллических, преимущественно полимерных, материалов). Композиционные К. м. по удельной прочности и удельному модулю упругости могут на 50—100% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкций на 20—50%.
Наряду с созданием композиционных К. м., имеющих ориентированную (ортотропную) структуру, перспективным путём повышения качества К. м. является регламентация структуры традиционных К. м. Так, путём направленной кристаллизации сталей и сплавов получают литые детали, например лопатки газовых турбин, состоящие из кристаллов, ориентированных относительно основных напряжений таким образом, что границы зёрен (слабые места у жаропрочных сплавов) оказываются ненагруженными. Направленная кристаллизация позволяет увеличить в несколько раз пластичность и долговечность. Ещё более прогрессивным методом создания ортотропных К. м. является получение монокристальных деталей с определённой кристаллографической ориентацией относительно действующих напряжений. Весьма эффективно используются методы ориентации в неметаллических К. м. Так, ориентация линейных макромолекул полимерных материалов (ориентация стекол из полиметилметакрилата) значительно повышает их прочность, вязкость и долговечность.
При синтезировании композиционных К. м., создании сплавов и материалов с ориентированной структурой используются достижения материаловедения.
Кристаллическое строение металлов
У металлов электроны на внешних оболочках имеют слабую связь с ядром, легко отрываются и могут свободно перемещаться между положительно заряженными ядрами. Следовательно, в металле положительно заряженные ионы окружены коллективизированными электронами. Так как эти электроны подвижны аналогично частицам газа, то используется термин «электронный газ».
Металлургический тип связи характерен тем, что нет непосредственного соединения атомов друг с другом, нет между ними прямой связи. Атомы в металлах размещаются закономерно, образуя кристаллическую решетку.
Кристаллическая решетка - это мысленно проведенные в пространстве прямые линии, соединяющие ближайшие атомы и проходящие через их центры, относительно которых они совершают колебательные движения. В итоге образуются фигуры правильной геометрической формы - кристаллическая решетка (рис. 1.1).


Расстояния (а,b,с) между атомами, т.е. параметры кристаллической решетки, находятся в пределах 2… 6 A° (1 A°=10-8 см). Каждый атом принадлежит 8 кристаллическим решеткам. В аморфных телах с хаотическим расположением атомов в пространстве, свойства в различных направлениях одинаковы, а в кристаллических телах расстояния между атомами в различных направлениях неодинаковы, поэтому различны и свойства. Тип кристаллической решетки (рис. 1.2) зависит от металла, температуры и давления. Это используется при термообработке металлов для упрочнения их.
Реальные металлы состоят из большого количества кристаллов, различно ориентированных в пространстве относительно друг друга. На границах зерен атомы кристаллов не имеют правильного расположения, здесь скапливаются примеси, дефекты и включения. Экспериментально установлено, что внутреннее кристаллическое строение зерен не является правильным. В решетках имеются различные дефекты (несовершенства), которые нарушают связь между атомами и оказывают влияние на свойства металлов.
Имеются следующие несовершенства в кристаллических решетках:
1. Точечные (рис. 1.3):
а) Наличие вакансий, т. е. мест в решетке, не занятых атомами. Это происходит из-за смещения атомов от равновесного состояния. Число вакансий увеличивается с ростом температуры.
|
|
б) Дислоцированные атомы, т. е. атомы вышедшие из узла решетки и занявшие место в междоузлии.
в) Примесные атомы, т.е. в основном металле имеются чужеродные примеси. Например, в чугуне основными атомами являются атомы железа, а примесными - атомы углерода, которые или занимают место основного атома, или внедряются внутрь ячейки.
2. Поверхностные несовершенства, имеющие небольшую толщину при значительных размерах в двух других направлениях.
3. Линейные несовершенства (цепочки вакансий, дислокаций и т. д.). Линейные дефекты малы в двух направлениях и значительно большего размера в третьем.
Количество дефектов в металле оказывает существенное влияние на его прочность. На первом участке кривой (рис. 1.4) при минимуме дислокаций меньше возможностей для сдвига атомов по кристаллической решетке ,поэтому будет максимум прочности металла (теоретическая, недостижимая прочность). Путем восстановления из хлористого или бромистого железа в лабораторных условиях выращивают «усы» кристаллов железа длиной до 10 см и диаметром 0,5 … 1 мкм , имеющие относительно высокую прочность на растяжение (бb = 1200 …1300 кгс / мм2). Для сравнения, высокопрочная сталь имеет прочность всего 150 …200 кгс / мм2 , т.е. на порядок ниже, а прочность железных «усов» примерно в 100 раз выше, чем у обычного железа (минимум на кривой).

Повышение прочности с увеличением плотности дислокаций выше их критического значения объясняется тем, что имеются не только параллельные, но и взаимопересекающиеся (объемные) дислокации. Они препятствуют взаимному перемещению металла и, как результат, приводят к увеличению прочности металла.
Все современные способы упрочнения металлов (легирование, закалка, прокатка, ковка, штамповка, волочение и т.д.) – это увеличение количества дефектов в металле. Наивысшая прочность, которую можно получить путем увеличения количества дефектов в металле, составляет около 1/3 от теоретически возможной (идеальной) прочности.
Кристаллизация металлов.
| |
|
|
При нагреве и охлаждении (рис. 1.5) аморфных тел (смола, стекло, пластмассы,…) при переходе из жидкого в твердое состояние качественных изменений не происходит. В твердом состоянии атомы в аморфном теле расположены так же хаотично, как и в жидком, имеют только меньшую степень перемещения. Из рис 1. 5 видим, что температура плавления Тпл равняется температуре кристаллизации Ткр, а переход из одного состояния в другое (из твердого в жидкое - точка Тпл, и из жидкого в твердое - точка Ткр) происходит скачкообразно.
По-другому ведут себя металлы (рис. 1.6). На участке 1 - 2 происходит нагрев металла; кристаллическая решетка сохраняется, но атомы увеличивают амплитуду колебаний за счет поглощенной тепловой энергии. На горизонтальном участке 2 - 3 также подводится тепло, но температура Тпл не повышается, т.к. подводимое тепло целиком расходуется на разрушение кристаллической решетки. Атомы переходят в неупорядоченное (жидкое) состояние. После разрушения последнего участка кристаллов, после точки 3 начинается повышение температуры жидкого металла по линии 3 - 4.
При охлаждении (4- 5) на горизонтальном участке 5 - 6 происходит кристаллизация, при которой выделяется тепло, поэтому процесс проходит при постоянной температуре Ткр. Кристаллизация металла происходит не при температуре плавления Тпл, а при некотором переохлаждении Dt, величина которая зависит от природы металла, наличия примесей и от скорости охлаждения.
Кристаллизация начинается с того, что при понижении температуры до значения Ткр начинают образовываться мелкие кристаллики, называемые центрами кристаллизации (зародышами). При дальнейшем уменьшении энергии металла происходит рост кристаллов и в то же время в жидкости возникают новые центры кристаллизации, т.е. процесс кристаллизации состоит из двух одновременно происходящих процессов: зарождение новых центров кристаллов и роста кристаллов из ранее образованных центров.
| |
|
|
Скорости кристаллизации и числа центров в зависимости от Dt изменяются по закону нормального распределения (рис.1.7).
| |
|
|
При переохлаждении (б) образуется мелкое зерно, т. к кристаллы быстро образуются, но медленно растут ,а при меньших (а) значениях Dt возникает крупное зерно.Мелкокристаллический металлболее твердый и прочный, чем крупнокристаллический. Следовательно, подбором температуры переохлаждения Dt можно регулировать механические характеристики металла. Многое зависит от количества нерастворимых примесей, которые являются центрами кристаллизации. Чем больше этих частиц, тем меньше зерна металла
3.Кристаллизация металлов
При переходе металла из жидкого состояния в твердое образуются кристаллы. Такой процесс называют кристаллизацией.

Процесс кристаллизации металла можно рассматривать по кривым охлаждения, которые обычно получают опытным путем. Например, для чистого металла, охлаждаемого очень медленно, кривая охлаждения показывает, что, если металл находится в жидком состоянии, температура понижается почти равномерно. Если металл охладить до температуры плавления Тпл (точка а на кривой), то начинается кристаллизация и падение температуры прекращается, несмотря на непрерывную отдачу тепла окружающей атмосфере. Получаемый горизонтальный участок на кривой охлаждения показывает, что в металле происходит процесс образования кристаллов с выделением тепла, называемый теплотой кристаллизации. Кристаллизация протекает от точки а до точки б, где она заканчивается и металл затвердевает. Дальнейшее падение температуры на кривой указывает на охлаждение затвердевшего слитка (рис. А).
В металлических сплавах кривая охлаждения имеет несколько иной вид. Охладившись до температуры плавления ТПл, сплав еще некоторое время остается жидким. Кристаллизация сплава начинается при температуре переохлаждения Тп, лежащей ниже теоретической температуры плавления. Разность между теоретической и фактической температурами кристаллизации называют степенью переохлаждения. Она зависит от природы сплава, его чистоты и скорости охлаждения. Чем больше скорость охлаждения сплава, тем больше степень переохлаждения. Петля на кривой охлаждения показывает, что кристаллизация сопровождается выделением тепла, которое повышает температуру сплава до температуры плавления, поддерживая ее до полного затвердевания металла. (рис. Б)
Аморфные тела затвердевают постепенно. В этом случае кривая охлаждения будет плавной, без горизонтальных площадок. (рис.В)
Процесс образования кристаллов состоит из двух одновременно протекающих стадий: появления зародышей - устойчивых центров кристаллизации и роста кристалликов вокруг этих центров.
Сначала каждый кристаллик в жидкости растет свободно, сохраняя правильную геометрическую форму. Так как одновременно образуется много кристаллических центров и рост кристалликов идет по всем направлениям, то смежные кристаллы, увеличиваясь, начинают непосредственно соприкасаться друг с другом и правильная форма их нарушается. В результате кристалл приобретает округленную форму, напоминающую зерно. Такие кристаллы принято называть кристаллитами, или зернами. В зависимости от условий затвердевания зерна могут быть крупными, хорошо различимыми невооруженным глазом, и мелкими, которые можно рассмотреть только при помощи металлографического микроскопа.
Процесс кристаллизации может быть описан количественно, если известны зарождение центров кристаллизации и скорость роста кристалликов. Число центров кристаллизации и скорость роста кристалликов зависят от степени переохлаждения металла. С увеличением степени переохлаждения ∆T число центров и скорость роста также возрастают, достигая максимального значения. Однако характер роста величин числа центров и скорости роста различен.
Если степень переохлаждения невелика, то скорость роста преобладает над числом центров, в результате чего образуется крупнозернистая структура. С увеличением степени переохлаждения скорость роста не изменяется, число центров продолжает расти, что приводит к образованию мелкозернистой структуры.

Строение сплавов. Диаграмма железо – углерод.
ДИАГРАММАFе - C
Диаграмма состояний железо - углерод дает основное представление о строении железоуглеродистых сплавов - таких как сталей и чугунов.
Обычно сталью, а тем более, чугуном называют сплавы железа с углеродом. Если в сплаве находится менее 2.14% С, то такой сплав называется сталью, если более 2.14% С - то чугуном. В последнее время в свете современной техники известны и получили распространение сплавы на основе железа, в которых углерода очень мало и он является даже нежелательным или вредным элементом. Тем не менее, такие сплавы также называются сталями. Во избежание терминологической путаницы принято считать сплавы, в которых железа более 50 % - сталями (чугунами), и именовать просто сплавами - материалы, содержащие железа менее 50 %. Научно это не строго, но технически четко.
Диаграмма железо - углерод, как ясно из названия, должна распространяться от чистого железа до углерода. Но железо с углеродом образует химическое соединение: цементит - Fe3C.

Поэтому можно отдельно рассматривать левую и правую часть диаграммы. Однако на практике применяют металлические сплавы с содержанием углерода не более 5%. Следовательно, рассматривая диаграмму железо - углерод на участке от железа до цементита, компонентами системы можно считать железо и цементит. В таком случае до рассмотрения системы следует ознакомиться со свойствами и строением этих компонентов.
Железо (Fe) - металл серебристо-белого цвета с температурой плавления 1539С. Атомный радиус 0.127 нм. Имеет две полиморфные модификации: - железо (Fe) с объемно-центрированной кубической решеткой, существующее до 911С и выше 1392С и -железо (Fe)c гранецентрированной кубической решеткой, существующее в интервале 911С - 1392С. Иногда высокотемпературную модификацию железа с ОЦК - решеткой обозначают как - железо (Fe). Период решетки -железа - 0.286 нм; период решетки -железа - 0.365 нм. До температуры 768С (точка Кюри) железо ферромагнитное (магнитно), а выше - становится парамагнитным (не магнитно). Принято обозначать парамагнитное железо с ОЦК - решеткой как -железо (Fe).
Углерод - неметалл, обычно существует в виде модификации графита, но может находиться в виде метастабильной модификации - алмаза. Атомный радиус углерода - 0.077 нм, температура плавления - 4500 - 5000С. Углерод с железом образует жидкий раствор, твердый раствор внедрения на основе -железа и -железа, и образует химическое соединение. Поэтому в системе сплавов Fe - C существуют следующие фазы: жидкий раствор, феррит, аустенит, цементит и графит.
Феррит (Ф) - твердый раствор углерода в -железе с предельной концентрацией 0.02%. Атом углерода находится либо в центре грани куба, либо в дефектах кристаллической решетки (вакансиях, на дислокациях).
Аустенит (А) - твердый раствор углерода в -железе с предельной концентрацией 2.14%С. Атом углерода находится в центре элементарной ячейки. Назван в честь английского ученого Р. Аустена.
Цементит (Ц) - химическое соединение железа с углеродом - карбид железа Fe3C содержит 6.67%С и имеет сложную ромбическую решетку с плотной упаковкой атомов. Температура плавления 1260 С. Цементит неустойчив и при определенных условиях распадается на железо и углерод.
Графит (Г) - имеет слоистую гексагональную решетку, низкую прочность и твердость.

Основные линии на диаграмме
ACB – линия ликвидус.
AECD – линия солидус.
ECD – линия эвтектического превращения; С – точка эвтектики (ледебурит).
SE – линия предельной растворимости С в А; ниже линии С выделяется в виде ЦII.
GS – нижняя граница устойчивости А; ниже линии часть кристаллов А теряет С и превращается в Ф, остальные кристаллы получают С и остаются устойчивыми.
PSK – линия эвтектоидного превращения; ниже линии А переходит в П.
PQ – линия предельной растворимости С в Ф; избыточный углерод – в виде ЦIII
GP – верхняя граница ферритной области; для любой двухфазной области диаграммы применимо правило отрезков.
Диаграмма делится на области по содержанию углерода: 0–2,14% – сталь (0–0,8% – доэвтектоидная сталь, 0,8–2,14% – заэвтектоидная сталь); 2,14–6,67% – чугун (2,14–4,3% – доэвтектический чугун, 4,3–6,67% – заэвтектический чугун).
Обозначения на диаграмме
А – аустенит – ограниченный твердый раствор внедрения углерода в кристаллической решетке Fe. Тип решетки – ГЦК. Максимальная растворимость углерода – 2,14% при температуре 1147°C (точка Е на диаграмме). Аустенит устойчив от температуры плавления сплавов доtmin= 727°C. Особенность: с понижением температуры устойчивость аустенит обеспечивается во все более сужающемся диапазоне растворимости углерода. При температуреtmin= 727°C аустенит устойчив только при определенном содержании углерода (0,8%) – точка S. При падении температуры ниже 727° C аустенит распадается и переходит в перлит (П).

Ф – феррит – ограниченный твердый раствор внедрения углерода в кристаллической решетке FeОЦК-решетка; содержание углерода – меньше 0,006% приt=20°C. Из-за малого содержания углерода по свойствам Ф аналогична чистому железу.
Ц – цементит – химическое соединениеFe3C – карбид (сложная кристаллическая решетка). С = 6,67%. Ц – самая высокоуглеродсодержащая фаза. Это самая твердая и прочная структура на диаграмме.
ЛА – ледебурит аустенитный – эвтектическая смесь фаз А и Ц. Образуется при температуре 1147° C (линия ECD).
ЛП – ледебурит перлитный – эвтектическая смесь фаз П и Ц. Образуется из ЛА при температуре <727° C в результате распада аустенита.
Превращения в сплавах Fe и С
Можно выделить следующие группы железоуглеродистых сплавов в зависимости от их структуры при комнатной температуре.
1.Техническое железо - сплавы с содержанием углерода менее 0.02%. Структура феррит, если содержание менее 0.01%, или феррит и цементит (третичный), если содержание углерода от 0.01% до 0.02%. Феррит представляет собой светлые зерна с четко выраженными границами.


2. Доэвтектоидные стали - сплавы с содержанием углерода от 0.02% до 0.8%, структура - феррит и перлит. Зерна феррита на протравленном шлифе светлые, а перлит выглядит в виде темных участков неоднородного строения. При достаточно большом увеличении видно, что строение перлита пластинчатое.
Для данного сплава на участке 4 - 4′: k = 2; f = 3 (Ф + А + Ц); с = 2–3+1=0 (t = const).
1–2 – первичная кристаллизация А из жидкости
2–3 – охлаждение А (превращений нет)
3–4 – диффузионное перераспределение углерода, образование Ф, повышение содержания углерода в А.
4–4' – распад А, образование П.
Ниже 4' – охлаждение сплава, выделение избыточного углерода из Ф (ЦIII).

3. Эвтектоидные стали - сплавы с содержанием углерода 0.8%, структура - перлит. Перлит состоит из пластинчатых кристаллов феррита и цементита. Толщина ферритной пластины примерно в 6 раз больше, чем цементитной, но рассмотреть отдельные пластинки можно только при достаточно большом увеличении микроскопа ( 1000). При меньших увеличениях перлит выглядит как чередующиеся темные и светлые полосы.


4. Заэвтектоидные стали - сплавы с содержанием углерода от 0.8% до 2.14%, структура - перлит и цементит. Вторичный цементит выделяется из аустенита в интервале температур от линии SE до 727С и образует тонкие оболочки по границам аустенитных зерен. После перлитного превращения и охлаждения до комнатной температуры каждый участок перлита оказывается окруженным хрупкой цементитной оболочкой. На шлифе цементит выглядит как светлая неразрывная сетка, разделяющая пластинчатые участки перлита.
1–2 – первичная кристаллизация, образование аустенитной структуры
2–3 – охлаждение твердого сплава (превращений нет)
3–4 – вторичная кристаллизация; 3 – образование насыщенного твердого раствора углерода в Fe. Понижение температуры приводит к диффузии избыточного углерода к граница зерен, в результате на границах образуются зоны с высоким содержание углерода, которые превращаются в Ц.
4–4' – эвтектоидное превращение А в П; 4' – конец превращения; t = 727° C =const .
Ниже 4' – остывание сплава, идет процесс третичной кристаллизации, ЦIIIиз феррита (теоретически).


5. Доэвтектические белые чугуны - сплавы с содержанием углерода от 2.14% до 4.3%, структура - перлит, ледебурит и вторичный цементит. Перлит в доэвтектических чугунах появляется в результате эвтектоидного превращения первичных кристаллов аустенита (т.е. образовавшихся из жидкости в области АСЕ). Эти кристаллы имеют форму дендритов, поэтому и перлит расположен по осям дендритов (крупные темные участки). Эвтектика - ледебурит - имеет ячеистое или сотовое строение, т.к. при эвтектической кристаллизации сквозь пластину цементита прорастают ветви аустенитных дендритов.
При пересечении металла плоскостью шлифа ледебурит выглядит как светлые участки цементита с темными ячейками перлита (эвтектический аустенит тоже претерпел эвтектоидное превращение при 727С).
1–2 –кристаллизация аустенита.
2–2' – кристаллизация эвтектики ЛА (t = 1147° C); 2' – конец первичной кристаллизации, жидкости нет.
2'–4 – образование вторичного цементита.
4–4' – эвтектоидное превращение А в П.
Ниже 4' – остывание сплава.
Эвтектические белые чугуны - сплавы с содержанием углерода 4.3%, структура - ледебурит. В плоскости шлифа различные участки ледебурита имеют разную форму перлитных ячеек, округлую или вытянутую.

`7. Заэвтектические белые чугуны - сплавы с содержанием углерода от 4.3% до 6.69%, структура - ледебурит и первичный цементит. Первичный цементит - это крупные светлые кристаллы игольчатой формы. Из-за высокой хрупкости, которую придает цементит, белые заэвтектические чугуны практически не используются.
5.Свойства металлов и сплавов.Пластичность и прочность металлов.
Металлы — химические элементы, характеризующиеся в твердом состоянии внутренним кристаллическим строением. Металлы имеют характерный блеск, они непрозрачны, при деформациях пластичны, характеризуются значительной теплопроводностью и электропроводностью. Металлы и сплавы, применяемые для изготовления товаров народного потребления, делят на черные и цветные. К цветным металлам относятся также благородные (драгоценные) металлы.
Черные металлы. Характеризуются большой плотностью, высокой температурой плавления, высокой твердостью. К черным металлам относят железо, кобальт, никель, марганец. Железо может растворять углерод (0,2 - 6,67%), давать с ним химическое соединение цементит; высокоуглеродистые сплавы содержат графит. Чистое железо (99,999 % Fe) из-за низких механических свойств не применяют для изготовления металлических изделий. Для них используют сплавы железа с углеродом и другими элементами в виде сталей и чугунов.
Сталь. Сталь — сплав железа с углеродом, содержание которого не превышает 2,14 %. Кроме углерода, в стали содержатся примеси марганца, кремния, фосфора, серы, кислорода, азота, водорода. Стали широко применяются для изготовления металлохозяйственных товаров.
По химическому составу стали делят на углеродистые и легированные. Углеродистые стали названы так по основному элементу — углероду. Углерод, которого в этих сталях не более 1,35 %, сильно влияет как на структуру, так и на свойства сталей. С увеличением его содержания возрастают твердость, прочность, упругость стали и снижаются ее пластичность, относительное удлинение. Примесями углеродистой стали являются марганец, кремний, сера, фосфор. Добавление марганца (0,5-0,8%) позволяет повысить твердость и прочность стали. Кремний (0,35-0,4%) повышает твердость, упругость, пластичность, текучесть стали. Нежелательные примеси углеродистых сталей - сера, фосфор, кислород, азот, водород.
По назначению углеродистые стали классифицируют на конструкционные и инструментальные. По качеству конструкционные углеродистые стали подразделяют на сталь качественную и сталь обыкновенного качества; инструментальные — на качественную и высококачественную. В зависимости от степени раскисления сталь подразделяют на кипящую (кп), полуспокойную (пс), спокойную (сп).
Конструкционные углеродистые стали содержат углерод в небольшом количестве — 0,06—0,85 %, вследствие чего обладают пластичностью, хорошо обрабатываются литьем, давлением, резанием, пригодны для изготовления изделий (конструкций) сложной формы.
Для изготовления изделий, не испытывающих при эксплуатации больших нагрузок, например посуды, целесообразно использовать кипящую сталь, а для изделий с большими механическими воздействиями (ножи, инструменты) больше подходят полуспокойная и спокойная сталь.
Углеродистые инструментальные стали применяют для изготовления ножей, режущих инструментов, деталей бытовых машин (мельницы для кофе, перца, мясорубки и др.), испытывающих сильное трение при работе.
Легированные стали, кроме углерода, содержат один или несколько легирующих, специально добавляемых элементов. К легирующим элементам относят марганец, кремний, хром, никель, вольфрам, кобальт, молибден, ванадий, титан и др. Эти элементы в зависимости от их количества, сочетания между собой, изменяют структуру и свойства сталей. Данные стали превосходят углеродистые по твердости, износостойкости, жаропрочности, устойчивости к коррозии. Однако подобные стали дороже углеродистых, для выплавки их требуется большое количество цветных металлов.
По назначению легированные стали классифицируют на конструкционные, инструментальные и стали с особыми свойствами. Конструкционные легированные стали характеризуются высокой прочностью к механическим нагрузкам и хорошей пластичностью, вязкостью.
Стали маркируют цифрами и буквами. Пример расшифровки стали марки 12Х2Н4А: 12 - 0,12% углерода, Х2 - 2% хрома, H4 - 4% никеля, А — высококачественная сталь.
Инструментальные легированные стали используют для изготовления режущих, сверлильных, измерительных и других инструментов, поскольку эти инструменты должны иметь повышенную износостойкость, особенно при высоких скоростях обработки и температуре.
Легированные стали и сплавы с особыми свойствами представлены коррозионностойкими (нержавеющими) сталями и сплавами с высоким сопротивлением электрическому току. Коррозион-ностойкие стали применяют для изготовления ножей, вилок и других столовых и кухонных принадлежностей, посуды и металлической галантереи. Нержавеющие стали отличаются устойчивостью к действию пищевых кислот, поваренной соли, они не разрушают витамины, содержащиеся в пище, ее вкус и цвет. Изделия из коррозионностойких сталей имеют красивый внешний вид. Эти важные потребительные свойства стали приобретают благодаря легированию хромом, никелем, титаном. С уменьшением содержания углерода устойчивость стали к коррозии возрастает. Высокие коррозионностойкие и механические свойства хромистые и хромоникелевые стали приобретают также в процессе термической и механической обработки.
Чугуны. Чугун — сплав железа с углеродом (содержание больше 2,14%) и другими элементами. Вырабатывают чугун выплавкой из железных руд в доменных печах.
По назначению чугуны классифицируют на передельные, литейные, высокопрочные, ковкие, легированные. Передельный (белый, за счет цементита) чугун используют для выплавки сталей.
Литейные (серые) чугуны содержат углерод 2,2-3,7% в химически не связанном состоянии в виде графита. Графит придает чугуну серый цвет на изломе. Металлохозяйственные изделия (посуда, корпуса мясорубок, замков, колунов и др.) из серого чугуна вырабатывают литьем в формы. Серые чугуны производятся 11 марок. Цифры в марке указывают предел прочности при растяжении (кгс/мм2).
Высокопрочные (модифицированные) чугуны производят с помощью добавки в расплавленные чугуны магния, церия и др. В результате обеспечивается высокая прочность и пластичность чугуна за счет выделения графита в шаровидной форме.
Ковкие чугуны производят выдержкой при 950—970 °С в течение 10-15 ч с последующим медленным охлаждением отливок из белого чугуна, которые содержат меньше углерода, кремния, марганца, серы. По сравнению с серыми чугунами ковкие чугуны прочнее на разрыв, устойчивее к ударам, повторнопеременным нагрузкам, их применяют для изделий, испытывающих подобные нагрузки (гаечные ключи, гайки, крюки, детали водопроводных труб и др.). Существуют 9 марок ковких чугунов.
Алюминий и его сплавы. Алюминий — металл серебристо-белого цвета, очень легкий (плотность 2200 кг/м3), пластичный, малопрочный, мягкий. Вследствие высокой пластичности в отожженном состоянии алюминий может легко обрабатываться давлением. На поверхности алюминия образуется тонкая, прочная окисная пленка, что обеспечивает ему стойкость к атмосферным воздействиям, действию органических кислот, щелочей, аммиаку и т.д. Чистый алюминий (99,996 % Аl) из-за недостаточной прочности и термостойкости как конструкционный материал применяют мало (для производства электрических конденсаторов, выпрямителей, полупроводниковых приборов, зеркал и т.п.). Более распространено использование прочных и термостойких сплавов на основе алюминия.
Алюминиевые сплавы по способу изготовления из них изделий подразделяют на деформируемые (изделия получают методами пластической деформации) и литейные (изделия изготавляют литьем).
Деформируемые алюминиевые сплавы классифицируют на упрочняемые и неупрочняемые с помощью термообработки.
Упрочняемыми деформируемыми сплавами алюминия являются дюралюмины марок Д1, Д16, Д18 (цифры показывают номер сплава). Основной легирующий элемент данных сплавов — медь (3,8— 4,8%); в сплаве содержатся также магний (0,4—2,3%), марганец (0,4-0,8%). Легирующие элементы придают дюралюмину твердость, прочность и некоторую пластичность. Эти свойства закрепляются термообработкой. Для коррозионной стойкости листы из дюралюмина подвергают плакировке - покрывают слоем чистого алюминия с последующим нагревом и прокаткой. Дюралюмин используют для изготовления мебели с металлическим каркасом, а также для деталей (ручек, арматуры) столовых приборов, замков и других бытовых изделий.
К деформируемым алюминиевым сплавам, неупрочняемым термической обработкой, относятся сплавы алюминия с марганцем и магнием марок АМц (марганца до 1,8 %) и АМг1-АМг6 (цифры - среднее содержание магния). Эти сплавы отличаются повышенной устойчивостью к механическим нагрузкам, коррозии. Деформируемые неупрочняемые сплавы алюминия в основном применяют для производства посуды, баков стиральных машин.
Литейные алюминиевые сплавы обладают хорошей жидкотекучестью, малой усадкой, пористостью. Они незначительно растрескиваются при остывании, что позволяет изготавливать из них изделия сложных форм. В то же время эти сплавы хорошо обрабатываются резанием. По химическому составу сплавы делятся на группы с I по V. Большинство марок этих сплавов (с АЛ2 по АЛ34) расшифровываются так: AЛ — алюминий литейный; цифра - порядковый номер сплава, химический состав которого регламентируется ГОСТом. Некоторые марки (АК7п, АК5М2п, АК7М2п) алюминиевых литейных сплавов для пищевой посуды обозначают по буквенно-цифровой системе: А - алюминий, К — кремний, М - медь, п — для пищевой посуды; цифры — среднее содержание элемента в сплаве.
Наиболее широко используют алюминиевые литейные сплавы I группы - с кремнием. От латинского названия кремния (силициум) они получили название силумины. Силумины не подвергаются термической обработке, их прочность повышают путем добавления модификаторов — соединений на основе натрия. Сплавы других групп могут упрочняться термической обработкой. Алюминиевые литейные сплавы используют для изготовления корпусов мясорубок, соковыжималок, деталей ножей, столовых и оконных приборов, инструментов, а также отдельных узлов бытовых машин. В сплавах для изделий пищевого назначения содержание свинца не должно превышать 0,15%, цинка — 0,3, мышьяка — 0,015%, примесь бериллия не допускается. Применение этих сплавов для изготовления изделий пищевого назначения в каждом случае должно быть согласовано с органами Министерства здравоохранения.
Медь и ее сплавы. Медь представляет собой металл красного цвета с температурой плавления 1083 °С, плотностью 8940 кг/м3 обладает высокой электропроводностью, используется как проводниковый материал. В бытовых изделиях применяют сплавы меди — латуни, бронзы и др.
Латуни - сплавы меди только с цинком (простые, двухкомпонентные, латуни) или с цинком и другими элементами, но с преобладанием цинка. При содержании цинка до 39% увеличивается прочность и пластичность сплава, при 40—45 % цинка прочность к растяжению увеличивается, а пластичность снижается. Количество цинка в латуни определяет ее цвет (18—20 % цинка — желто-красный; 20-30% цинка - буро-желтый; при 30% и более - светло-желтый).
По способу изготовления изделий латуни подразделяют на обрабатываемые давлением (деформируемые) и литейные.
К однокомпонентным деформируемым относятся латуни марок: томпак — Л96, Л90; полутомпак - Л85, Л80; латунь - Л70, Л68, Л62. Буква «Л» — латунь, цифры — среднее количество меди в процентах. Содержание цинка определяют вычитанием: 100% минус содержание меди; например, в латуни марки Л70 цинка будет 30%. В марках многокомпонентных деформируемых латуней после буквы «Л» стоит первая буква названия легирующих элементов.
Литейные латуни являются многокомпонентными сплавами, содержат большее количество легирующих элементов (марганец, олово, никель, свинец, кремний), что улучшает литейные свойства сплава.
Из деформируемых латуней вырабатывают посуду, самовары, духовые музыкальные инструменты, охотничьи гильзы,галантерейные изделия, бижутерию. Литейные латуни используют для подшипников, втулок, шестерен.
Бронзы — сплавы меди с оловом и другими цветными металлами (алюминием, кремнием, железом, марганцем, бериллием и др.). Бронзы классифицируют на оловянные и безоловянные. Оловянные бронзы, у которых основным легирующим элементом является олово, применяются для отливки художественных изделий: корпусов настольныхчасов, подсвечников, бюстов, мелкой пластики. Марки безоловянных бронз в зависимости от вида, количества легирующего элемента имеют разнообразное назначение и свойства, по ряду которых превосходят оловянные бронзы (за исключением литейных свойств). По способу производства изделий бронзы подразделяют на деформируемые и литейные, которые могут быть с термообработкой и без нее. Марки бронз обозначают буквами и цифрами. Например: БрАЮЖЗМц2: Бр - бронза; А (алюминий) - в среднем 10%; ЖЗ (железо) — 3%; Мц (марганец) - 2%; содержание меди - 85%.
Мельхиор (МН-19) и нейзильбер (МНЦ15-20) представляют собой сплавы меди с никелем, имеющие серебристый цвет, прекрасные технологические и механические свойства, коррозионную стойкость. Эти сплавы широко применяют для изготовления высококачественной посуды, столовых приборов и других изделий. В марках этих сплавов буквы обозначают: М - медь, Н — никель, Ц - цинк; цифры 19 и 15 - содержание в % никеля, 20 — цинка. Количество меди определяют вычитанием из 100 суммарного содержания других элементов. Изделия из медно-никелевых сплавов облагораживают серебрением, золочением, чернением, чеканкой и другими способами.
Хром — серебристо-белый метал, плотностью 7140 кг/м3. Имеет высокую температуру плавления (1830 °С), устойчив к действию атмосферы, воды, щелочей, органических и минеральных кислот. Обладает высокой твердостью и хрупкостью. Хром используют для защитно-декоративных покрытий и легирования сталей, получения медно-никелевых сплавов. Хромовые покрытия обладают особенной износостойкостью и долговечностью.
Никель — серебристо-белый с голубоватым оттенком металл. Имеет плотность 8920 кг/м3, характеризуется пластичностью, тугоплавкостью (температура плавления 1453 °С), достаточной механической прочностью. Обладает устойчивостью к атмосферным воздействиям, к воде, органическим и минеральным (кроме азотной) кислотам, не оказывает отрицательного влияния на вкус, цвет, запах, питательную ценность пищи. Никель широко используют для получения защитно-декоративных покрытий стали, латуни и других металлов, а также для легирования сталей, получения нихромов, мельхиора, незильбера и др.
Цинк - светло-серый легкоплавкий (419 °С) металл (плотность 7140 кг/м3), устойчив к атмосферным воздействиям благодаря образованию защитной оксидной пленки. Цинк применяется для получения защитных покрытий на стальных изделиях. Цинковые покрытия не выдерживают воздействия горячей воды, пищевых и минеральных кислот и щелочей. Соединения цинка токсичны, поэтому на изделия пищевого назначения цинковые покрытия не наносят.
Олово — серебристо-белый металл (плотность 7300 кг/м3), обладает низкой температурой плавления (232°С), высокой пластичностью и мягкостью. По коррозионной стойкости олово приближается к благородным металлам. Олово устойчиво к действию холодной и горячей воды, органических кислот, разбавленных минеральных кислот, щелочей, не образует токсичных соединений с пищевыми продуктами. Олово широко применяют для получения белой жести (малоуглеродистую листовую сталь покрывают слоем олова), предназначенной для металлических консервных банок, крышек, металлической посуды, кухонных принадлежностей.
Титан — серебристо-белый, легкий (плотность 4500 кг/м3), прочный, тугоплавкий (1665°С), коррозионностойкий металл. По прочностным свойствам титан соответствует конструкционным сталям, а по коррозионной стойкости превосходит высоколегированные нержавеющие стали. Используют для изготовления столовых приборов, металлической галантереи, лыжных палок и других.
Благородные или драгоценные, металлы характеризуются красивым внешним видом, коррозионной стойкостью в обычной атмосфере и в большинстве кислот и щелочей, высокой температурой плавления, способностью прокатываться в тончайшие пленки и нити. К драгоценным металлам относятся серебро, золото, платина и металлы платиновой группы — палладий, рутений, родий, иридий, осмий.
Для бытовых ювелирных изделий используют в основном серебро, золото и платину.
Серебро характеризуется высокими электро- и теплопроводностью, пластичностью, отражающей способностью плотность 10500 кг/м3. Серебро обладает устойчивостью к действию воды, соляной и органических кислот, но растворяется в азотной кислоте. Под действием серы и серосодержащих веществ серебро чернеет, так как на его поверхности образуется пленка сульфида серебра Ag2S. Это свойство используется для декоративной отделки серебряных изделий — чернения. Серебро используют для защитно-декоративных покрытий, изготовления ювелирных изделий, припоев, светочувствительных материалов, контактов электроприборов, покрытия колб термосов и других целей. Содержание серебра и других драгоценных металлов в сплавах обозначают пробой — количеством граммов благородного металла в 1000 г сплава. Стандартные пробы серебряных сплавов - 800, 875, 916.
Золото — металл ярко-желтого цвета, с сильным блеском, тяжелый (плотность 19320 кг/м3), но при этом мягкий и пластичный. Золото характеризуется высокой химической стойкостью к действию атмосферы, воды при высоких и низких температурах, к кислотам, щелочам, однако, растворяется в царской водке, (смесь соляной и азотной кислот), бромной и хлорной воде. Ювелирные изделия изготавливают не из чистого золота, вследствие его мягкости, а из сплавов золота с медью, серебром, палладием (белое золото). В зависимости от соотношения этих элементов изменяются цвет, оттенки и твердость сплава. Стандартные пробы золотых ювелирных сплавов - 375, 585, 750, 958. Золото используют также для декоративных покрытий.
Платина — белый металл с сероватым оттенком, имеет высокие плотность (21500 кг/м3) и температуру плавления. Обладает высокой твердостью, но меньшей пластичностью. Для повышения прочности ее сплавляют с металлами платиновой группы: родием, иридием, палладием, а также с золотом, серебром и медью. В ювелирном деле применяется платина пробы 950 для изготовления украшений, а также в качестве оправы бриллиантов, поскольку платина имеет одинаковый с алмазом коэффициент линейного расширения, при этом бриллиант в оправе из платины имеет лучший блеск.
Прочность. Прочностью называют свойство твердых тел сопротивляется разрушению, а также необратимыми изменениями формы. Основным показателем прочности является временное сопротивление, определяемое при разрыве цилиндрического образца, предварительно подвергнутого отжигу. По прочности металлы можно разделить на следующие группы:
непрочные (временное сопротивление не превышает 50 МПа) - олово, свинец, висмут, а также мягкие щелочные металлы;
прочные (от 50 до 500 МПа) - магний, алюминий, медь, железо, титан и другие металлы, составляющие основу важнейших конструкционных сплавов;
высокопрочные (более 500 МПа) - молибден, вольфрам, ниобий и др.
К ртути понятие прочности неприменимо, поскольку это жидкость.
Временное сопротивление металлов указано в таблице 10.
Таблица 10. Прочность металлов
Металл | Временное сопротивление, МПа | Металл | Временное сопротивление, МПа |
Титан | 580 | Цинк | 120-140 |
Железо | 200-300 | Алюминий | 80-120 |
Медь | 200-250 | Золото | 120 |
Магний | 120-200 | Олово | 27 |
Серебро | 150 | Свинец | 18 |
Пластичность. Пластичность - это свойство твердых тел сохранять часть деформации при снятии нагрузок, которые их вызвали. В качестве показателя пластичности выборочно относительное удлинение, определяемое при тех же испытаниях, что и временное сопротивление.
По степени пластичности металлы принято подразделять следующим образом:
высокопластичные - (относительное удлинение превосходит 40 %) - металлы, составляющие основу большинства конструкционных сплавов (алюминий, медь, железо, титан, свинец) и "легкие" металлы (натрий, калий, рубидий идр.);
пластичные - (относительное удлинение лежит в диапазоне между 3% и 40%) - магний, цинк, молибден, вольфрам, висмут и др. (наиболее обширная группа);
хрупкие - (относительное удлинение меньше 3%) - хром, марганец, кольбат, сурьма.
Высокая очистка хрупких металлов несколько повышает пластичность. Сплавы, полученные на их основе, почти не поддаются обработке давлением. Промышленные изделия из них часто получают путем литья. Относительное удлинение металлов характеризует таблица 11.
Таблица 11. Пластичность металлов.
Металл | Относительное удлинение, % | Металл | Относительное удлинение, % |
Золото | 65 | Титан | 50 |
Серебро | 65 | Олово | 40 |
Свинец | 65 | Алюминий | 30-40 |
Медь | 50-60 | Цинк | 30 |
Железо | 40-50 | Магний | 10-22 |
Твердость. Твердость - это характеристика материала, отражающая его прочность и пластичность, определяемая путем вдавливания шарика (метод Бринелля) или призмы (метод Виккерса). Количественный оценкой твердости является число твердости НВ, равное отношению нагружения (Н) к площади поверхности отпечатка (мм2). Значения твердости металлов по Бринеллю приведена в таблице 12.
Таблица 12. Твердость металлов.
Металл | НВ | Металл | НВ |
Титан | 160 | Алюминий | 16-25 |
Железо | 70-80 | Серебро | 25 |
Магний | 30-40 | Золото | 18 |
Медь | 40 | Олово | 5 |
Цинк | 33 | Свинец | 4 |
Модуль продольной упругости. Модуль продольной упругости, или модуль Юнга, Е определяет жидкость металла, т.е. интенсивность увеличения напряжения по мере увеличения упругости деформации (таблица 13).
Таблица 13. Модуль Юнга металлов при 20 oС.
Металл | Е * 10-5, МПа | Металл | Е * 10-5, МПа |
Железо | 2,17 | Золото | 0,83 |
Цинк | 1,30 | Алюминий | 0,72 |
Медь | 1,25 | Олово | 0,55 |
Титан | 1,08 | Магний | 0,45 |
Серебро | 0,83 | Свинец | 0,18 |
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/610452-opornyj-konspekt-po-materialovedeniju
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- «Организация обучения и воспитания младших школьников в соответствии с ФОП НОО и ФАОП НОО для обучающихся с ОВЗ»
- «Организация обучения и воспитания студентов в профессиональных образовательных организациях с учетом требований ФГОС СПО»
- «Психологическое сопровождение семей, воспитывающих детей с ОВЗ и детей-инвалидов»
- «Конфликты в образовательной среде: действия педагогов и руководителей образовательных организаций»
- «Оказание первой помощи в соответствии с ФЗ «Об образовании в Российской Федерации»
- Учитель-логопед в образовательной организации. Коррекция речевых нарушений у младших школьников
- Управленческая деятельность в организации дополнительного образования детей
- Менеджмент в дополнительном образовании детей
- Психологическое консультирование и оказание психологической помощи
- Менеджер в образовании: управленческая деятельность в образовательной организации
- Особенности обучения предмету «Труд (технология)»





Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.