Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
30.10.2014

Конспект урока по математике в 11 классе «Способы решения иррациональных уравнений»

Тема эта актуальна, так как иррациональные уравнения часто встречаются на вступительных экзаменах в ВУЗы, с их помощью легко диагностируются знания абитуриентов по многим понятиям, начиная с такого понятия как равносильность уравнений и заканчивая понятием ОДЗ.
Цель урока: обобщить знания по теме “Иррациональные уравнения”, повторить способы их решения и научиться выбирать наиболее рациональные для конкретной группы иррациональных уравнений; вспомнить нестандартные способы решения иррациональных уравнений; решение заданий части С по материалам ЕГЭ.

Содержимое разработки

Муниципальное общеобразовательное учреждение

Гимназия №10 ЛИК

Города Невинномысска Ставропольского края

Конспект урока по математике
в 11 классе

«Способы решения иррациональных уравнений»

подготовила

учитель математики

Козлова Лариса Викторовна

г. Невинномысск
2013

Цель:

Систематизировать способы решения иррациональных уравнений.

Способствовать формированию умения выбирать наиболее рациональные способы решения иррациональных уравнений.

Закрепить основные методы решения иррациональных уравнений:

- метод возведения обеих частей уравнения в одну и ту же степень;

- метод введения новой переменной.

Вспомнить нестандартные способы решения иррациональных уравнений.

Решение заданий части С по материалам ЕГЭ.

Ход урока

1. Этап урока

Изучая тему “Обобщение понятия степени”, мы уже систематизировали и обобщили знания по темам “Корень n-ой степени и его свойства”, “Степень с рациональным показателем”.

А сегодня, наши цели: обобщить знания по теме “Иррациональные уравнения”, повторить способы их решения и научиться выбирать наиболее рациональные для конкретной группы иррациональных уравнений.

Тема эта актуальна, так как иррациональные уравнения часто встречаются на вступительных экзаменах в ВУЗы, с их помощью легко диагностируются знания абитуриентов по многим понятиям, начиная с такого понятия как равносильность уравнений и заканчивая понятием ОДЗ.

Вопросы к классу для фронтального повторения:

1. Какие уравнения называются иррациональными?

Иррациональными называются уравнения, в которых переменная содержится под знаком радикала или переменная возведена в дробную степень.

2. Сформулируйте основной алгоритм решения иррациональных уравнений.

Алгоритм

Найти ОДЗ

Возвести в одну и ту же степень обе части уравнения

Решить полученное уравнение

Сделать проверку

3. Назовите известные вам способы решения иррациональных уравнений.

Способы решения иррациональных уравнений

Уединение радикала (возведение в одну и ту же степень)

Введение новой переменной

Умножение на сопряженное выражение

Уравнения, содержащие кубические радикалы

Уравнения, приводимые к уравнениям с модулями

Исследование области определения и области значения

Способ равносильных переходов (переход к системе)

2. Этап урока

Широко распространенными иррациональными уравнениями, предлагаемыми на вступительных экзаменах, являются уравнения вида =В(х), где А(х) и В(х) – алгебраические выражения, где неизвестная величина содержится под знаком корня и уравнения вида .

Вернемся к уравнению вида ), тогда

Примеры: (решение выносится на доску)

1);

2)= Х.-2

Еще один вид иррационального уравнениясводится к системе

Кстати, можно проверять и А(х)? 0, т.е. то, что в данной задаче проще. Основные методы решения иррациональных уравнений

1.Поговорим об одном из главных способов решения иррациональных уравнений - способе уединения корня. Итак, рассмотрим первый способ решения иррациональных уравнений и охарактеризуем некоторые его особенности.

А) Решить уравнение: .

В) Решить уравнение:

2.Метод введения вспомогательного неизвестного или “метод замены”.

А) Решить уравнение x2 + 3x – 18 + 4 (ЕГЭ 2010 г)

В) Решить уравнение: ( решается на закрытой доске с последующей проверкой)

Часто этот метод встречается при решении других уравнений, не только иррациональных.

3. Уравнения, содержащие кубические радикалы.

Решить уравнение:

(ЕГЭ )

4. “Искусство” или нестандартный подход.

1. Решить уравнение : (ЕГЭ ).

Разделим обе части уравнения на х>0,

получим уравнение .

3. Этап урока

Сильным учащимся предлагаются задания:

А)

Решение:

Ответ: нет решения.

В)

По определению левая часть неотрицательное число, а (–1– 2х2 < 0), поэтому уравнение не имеет решения.

Остальным учащимся предлагается задание:

Попробуйте догадаться: какими способами можно решить уравнения, записанные на доске?

Самостоятельная работа по группам:

Сгруппировать по 4 методам:

1)

2)

3)

4)

5)

6)

7)

8).

8).

Решить уравнения по группам:

1 группа: №2, 4;

2 группа: №1.

3 группа. №3, 5;

4 группа. №6, 8.

Защита от каждой группы по одному примеру

Дома: Подобрать и решить из дополнительной литературы 7 примеров, сгруппировав их по методам решения.

Список использованной литературы


1. Алгебра и начала анализа.10-11кл.: Задачник для общеобразовательных учреждений/А.Г.Мордкович


Использованные материалы и Интернет-ресурсы

1. alexlarin.net/ege14.html
2.http://www.edu.ru/

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/70479-konspekt-uroka-po-matematike-v-11-klasse-spos

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки