- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Конспект урока геометрии «Сумма углов в треугольнике»
Исходный уровень знаний, умений и навыков учащихся, необходимый для изучения данной темы
К моменту изучения данной темы учащиеся на достаточном уровне обладают следующими необходимыми знаниями, умениями, навыками:
Учащиеся знают:
Определение смежных углов
Свойство смежных углов
Три признака параллельности прямых
Свойства углов, образованных при пересечении двух параллельных прямых секущей
Виды углов, образованных при пересечении двух прямых секущей
Учащиеся умеют:
Находить сумму величин смежных углов
Доказывать параллельность прямых по признакам параллельности прямых
Учащиеся имеют навыки:
Вычислительный навык
Навык выполнения простейших чертежей
Навык решения задач на признаки параллельности прямых и на свойства углов, образованных при пересечении двух параллельных прямых секущей
Цели урока
Образовательные:
Изучить теорему о сумме углов треугольника, используя частично поисково- проблемный метод обучения;
Обеспечить усвоение учащимися новых знаний;
В ходе решения задач закрепить в памяти учащихся полученные знания, повысить уровень его осмысления, понимания;
Отработать навыки решения задач;
Формировать речь, обогащенную грамотными математическими понятиями, формулировками.
Развивающие
Создать содержательные и организационные условия для развития у учеников умений, анализировать познавательные объекты, выделять главное, сравнивать, строить логические умозаключения и доказательства;
Развивать познавательный интерес учащихся к окружающей жизни;
Продолжать развивать интерес к новому для них предмету изучения- геометрии;
Развивать внимание, память, логическое мышление.
Воспитательные
Воспитание аккуратности при оформлении записей;
Воспитание активного интереса к знаниям, трудолюбия.
Тема урока: «Сумма углов треугольника»
Место урока в системе Данный урок первый в теме «Сумма
уроков: углов треугольника»
Этому уроку предшествуют темы:
«Признаки параллельности прямых»
«Аксиома параллельных прямых»
Тип урока:Урок изучения нового материала
Этапы урока: 1. Организация начала урока
2. Проверка выполнения домашнего задания
3. Актуализация знаний, подготовка к усвоению нового учебного материала
4. Усвоение новых знаний
5.Первичная проверка понимания учащимися нового материала
6. Закрепление новых знаний
7. Подведение итогов урока
8. Информация о домашнем задании, инструктаж о его выполнении
Ход урока:
1, Организационный этап.
Учитель приветствует учащихся, проверяет готовность учащихся к уроку, фиксирует отсутствующих.
2.Этап проверки домашнего задания.
Начнем наш урок с проверки домашнего задания.
Задача. Решите задачу по готовому чертежу.
Дано:BD || AC. Найти сумму углов треугольника?
Решение: По условию BD || AC.
< 3 = < 5 как накрест лежащие углы при параллельных прямых BD и AC и секущей ВС.
< 1 = < 4 как накрест лежащие углы при параллельных прямых BD и AC и секущей АВ.
< 4 + < 2 + < 5 = 180развернутый угол.
Значит < 1 + < 2 + < 3 = 180 .
Какие теоремы применялись при решении задачи?
Сформулируйте свойства углов, образованных двумя параллельными прямыми и секущей?
Случайно ли сумма углов треугольников оказывается равной 180или этим свойством обладает любой треугольник? Мы не знаем.
Сейчас мы можем точно ответить на этот вопрос?Нет
Попытаемся сформулировать общую задачу нашего урока. Найти сумму углов треугольника.
Откроем тетради, запишем в них число, тему урока.Сумма углов треугольника.
3. Актуализации знаний, подготовка к усвоению нового учебного материала.
Предлагаю учащимся работу в группах. Дав первому ряду прямоугольный треугольник, второму – равнобедренный, третьему – тупоугольный.
Разделим наш класс на 3 исследовательских группы.
У каждого ученика на парте треугольник из цветной бумаги и транспортир.
№1.
С помощью транспортира измерить углы данного треугольника, записать результаты измерений в тетрадь. Найти сумму углов треугольника?
< 1 = , < 2 = , < 3 = . < 1 + < 2 + < 3 =
Дети делают измерения, считают. Опрашиваю результаты?
Какие результаты мы получили? Почему не все ответы совпадают?
Таким образом, мы нашли, что сумма углов треугольника равна 180 .
Какую гипотезу можно выдвинуть? Сумма углов любого треугольника равна 180 .
Можно ли быть уверенным, что в каждом треугольнике сумма углов равна 180 ? (да)
Поиск ответа естественно приводит к формированию теоремы о сумме углов треугольника.
В результате исследования у нас получилось утверждение, которое мы попробуем доказать.
4. Объяснение нового материала.
Учитель: просит сформулировать теорему, записывает текст теоремы на доске, доказывает теорему в месте с учениками.
Теорема. Сумма углов треугольника равна 180 .
Дано:ΔАВС
Доказать: < А + < В + < С = 180
Доказательство:
Рассмотрим произвольный треугольник АВС. Пусть <A = < 1, < B = < 2, < C = < 3. Проведем через вершину В прямуюа, параллельно стороне АС.
< 1 = < 4 накрест лежащие углы при пересечении параллельных прямых а и АС секущей АВ.
< 3 = < 5 накрест лежащие углы при пересечении тех же параллельных прямых секущей ВС. Сумма углов 4, 2, и 5 равна 180 . Учитывая равенство (1), получаем:
< 1 + < 2 + < 3 = 180 , или < А + < В + < С = 180 . Теорема доказана.
5. Первичная проверка понимания учащимися нового материала.
По готовым чертежам (приложение 1) проводится самостоятельная работа на нахождение неизвестных углов треугольника. Карточка с заданием раздается каждому ученику. Первая задача разбирается устно, вместе с учителем.
Затем решение проверяется по готовым ответам. Ученики проверяют решение, исправляют ошибки, выставляют оценку (за каждый верный ответ – балл).
Вы оценили своё умение находить неизвестные углы в треугольнике. У кого все задания сделаны верно? С одной ошибкой? У кого задачи вызвали затруднения?
Ученики поднимают руку.
6. Закрепление новых знаний.
Сейчас мы продолжим находить неизвестные углы треугольника и решим вместе №225 и №228(а)
№225. Дано: треугольник АВС – равносторонний.
Доказать: < А = < В = < С = 60
Доказательство: < А + < В + < С = 180теорема о сумме углов треугольника
< А = < В = < С по свойству равностороннего треугольника. 180 : 3 = 60
< А = < В = < С = 60 .
Ответ: < А = < В = < С = 60 .
№ 228 (а).
Решение:
Рассмотрим два случая:
а) угол при основании равен 40 , тогда второй угол при основании равнобедренного треугольника тоже равен 40 ; значит, угол при вершине равен 180- (40 + 40 ) = 100 .
б) угол при вершине равен 40 , тогда углы при основании равны (180 - 40 ) : 2 = 70 .
После решения каждой задачи идет проверка и оценивание каждого ученика.
7. Подведение итогов урока.
- Итак, подведем итог урока. Предлагаю вам ответить на следующие вопросы:
- Какая проблема стояла перед нами в начале урока?
- Мы с вами её сумели решить? Да
- Каким образом? Доказали теорему.
- Что ещё? Тренировались во внимательном отношении к задачам.
- Ребята, как вы считаете, кто из вас сегодня хорошо работал на уроке. Поднимите руку.
8. Этап информации о домашнем задании.
- Из каких заданий, на ваш взгляд, должно состоять домашнее задание?
(Решение задач на нахождение углов треугольника).
- Соглашусь с вами, предлагаю следующее домашнее задание.
Первая часть домашнего задания: п. 30, № 223 (а. б, в), № 226.
Вторая часть задания: Ответить на вопрос: «Может ли треугольник иметь: а) два прямых угла; б) два тупых угла; в) один прямой и один тупой угол?». Ответы должны быть обоснованы с помощью теоремы о сумме углов треугольника.
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/166782-konspekt-uroka-geometrii-summa-uglov-v-treugo
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Организация работы с детьми с ОВЗ раннего и дошкольного возраста»
- «Технологии искусственного интеллекта в образовательном процессе»
- «Организация образовательного процесса в соответствии с ФГОС СОО: преподавание иностранного языка (английского языка)»
- «Преподавание физики и химии по ФГОС ООО и ФГОС СОО: содержание, методы и технологии»
- «Реализация инклюзивного образования обучающихся с ОВЗ в общеобразовательной школе»
- «Движение Первых»: наставничество в рамках общероссийского движения детей и молодёжи»
- Педагогика и методика преподавания основ духовно-нравственной культуры народов России в образовательной организации
- Профессиональная деятельность специалиста в области охраны труда: теоретические и практические аспекты
- Содержание и организация деятельности учителя-логопеда в дошкольной образовательной организации
- Менеджмент в образовании
- Содержание и методы работы музыкального руководителя в дошкольной образовательной организации
- Музыка: теория и методика преподавания в образовательных организациях

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.