- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Решение проектных задач
КлимкоВ.П., учитель математики
«Задачи на построение сечений»
Предмет:Геометрия, 10 класс .
Тип урока: Урок комплексного применения знаний. Семинар.
(выработка умений учащихся самостоятельно применять знания по теме в комплексе, в новых условиях)
Цели урока: формирование у школьников ключевых компетенций:
в познавательной деятельности:
определять структуру объекта, находить и выделять значимые функциональные связи и отношения между частями целого;
сравнивать, сопоставлять, объекты по одному или нескольким предложенным критериям;
уметь логически обосновывать и аргументировать суждения;
уметь действовать по алгоритму, а также в нестандартных ситуациях,
в информационно-коммуникативной деятельности:
Уметь вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника, признавать право на иное мнение).
Создавать письменные высказывания (кратко).
в рефлексивной деятельности:
Владение навыками оценки своей деятельности, умение предвидеть возможные результаты своей деятельности
Цель урока: формирование у школьников предметных компетенций:
формирование пространственных представлений через решение задач на построение сечений тетраэдра и параллелепипеда.
Задачи урока:
Развивающая: формирование у школьников умения оперировать образами в целях преобразования геометрических фигур, умений логически мыслить и рассуждать.
Образовательная: выработка навыков построения сечений тетраэдра и параллелепипеда по трём заданным точкам.
Воспитательная: формирование умений работать самостоятельно и в группах; вести диалог; выработка навыков правильного и аккуратного выполнения чертежа при решении задач на построение.
Оборудование к уроку: мультимедиапроектор, ПК, интерактивная доска, слайдовая презентация по теме урока, каркасные модели пространственных фигур, чертёжные инструменты, модели сердца, головы и яйца в разрезе.
Раздаточный материал: карточки с заданиями для самостоятельной работы в группах; распечатанные тексты домашнего задания.
План урока
№ | Этап урока | Приемы и методы | Элементы технологии | Время (мин) |
1 | Организационный момент | Вступительное слово учителя. Словесный. Проблемный. | По преобладающему методу: - проблемно-поисковые | 3 |
2 | Проверка выполнения ДЗ. | Взаимопроверка выполнения ДЗ. Словесный. Схематический. | По организационным формам: групповые (парные) | 2 |
3 | Актуализация знаний. Подготовка к основному этапу урока | Повторение определений, понятий; показ объектов, использование абстрактной наглядности. (Наглядный, проблемный, частично-поисковый) | По преобладающему методу: - объяснительно-иллюстративное; - развивающее обучение; - проблемно-поисковые; - информационные (компьютерные). | 10 |
4 | Основной этап урока. Закрепление новых знаний | Использование абстрактной наглядности. Решение задач. Словесный. Практический. | По преобладающему методу: - репродуктивное; - объяснительно-иллюстративное; - развивающее обучение; - проблемно-поисковые; - информационные (компьютерные). По концепции усвоения: - ассоциативно-рефлекторное (восприятие, осмысление, запоминание, применение); По организационным формам: групповые | 10 |
Основной этап урока. Контроль знаний. | Самостоятельная работа в группах. Практический. | 10 | ||
5 | Итог урока. | Устный анализ. Словесный, беседа. | По концепции усвоения: - ассоциативно-рефлекторное | 3 |
6 | Домашнее задание | Использование абстрактной наглядности. Словесный, объяснение. | По преобладающему методу: - объяснительно-иллюстративное; - информационные (компьютерные). | 2 |
Ход урока.
№ этапа | Деятельность учителя | Деятельность учащихся |
1 | Организационный момент. Вступительное слово учителя. Приветствие учеников и коллег. Одной из главных целей преподавания геометрии как составной части математического образования принято считать формирование у школьников пространственныхпредставлений. Это связано с подготовкой школьников к жизни, к труду в различных сферах общественно-полезной деятельности, для продолжения обучения в высших учебных заведениях разнообразного профиля.. Ориентация человека в пространстве является тем фундаментом, который необходим для практической деятельности по таким, например, специальностям, как архитектор, инженер, строитель, геодезист, чертежник, оператор, диспетчер, космонавт и т.п. Вопрос классу: «На ваш взгляд, какую роль играют пространственные представления в сфере вашей будущей деятельности?» (в профессиональной деятельности, в жизни, где пригодятся?) Построения на проекционном чертеже являются одним из эффективных средств развития пространственных представлений. Среди задач на построение наиболее многочисленными являются задачи, решаемые на изображениях плоских фигур, и задачи на построение сечений. На прошлом уроке, мы отметили, что существует несколько методов построения сечений пространственных тел (метод построения сечений по трём заданным точкам, метод следов, метод внутреннего проектирования, комбинированный метод), но на сегодняшнем уроке мы закрепим самый простой из них - «метод построения сечений многогранников по трём точкам» Но многогранники и их свойства мы будем изучать позже, поэтому мы рассмотрим решение задач на построение сечений тетраэдра и параллелепипеда по трем данным точкам. Итак, запишем дату и тему урока в тетради. (см. слайд 1) Учитель формулирует цель урока (см. слайд 2) | Учащиеся записывают дату и тему урока в тетради, затем учитель формулирует цель урока. |
2 | Проверка выполнения ДЗ. Проверку домашнего задания проведём в форме взаимопроверки. (см. слайд 3) | |||||||||||||
3 | Актуализация знаний. Подготовка к основному этапу урока Учитывая тот факт, что лекция по данной теме была проведена ещё до каникул, нам необходимо повторить важные моменты, связанные со способами решения задач на построение сечений. Во-первых, мы познакомились с новым понятием многогранника, как поверхности геометрического тела, составленной из многоугольников, и дали определения тетраэдру и параллелепипеду. Давайте вспомним их определения (см. слайд 4.) Во-вторых, изучили новые понятия: грань, ребро, вершина. Они соответствуют основным понятиям геометрии – плоскость, прямая, точка. (см. слайд 5) Сколько граней, ребер, вершин имеет тетраэдр? Параллелепипед?
Проведём разминку:выполним упражнения на развитие пространственного воображения. Вопросы учителя классу: Из предложенных моделей назовите те, с помощью которых можно составить указанную фигуру (и). (см. слайд 6) Какая фигура изображена на рисунке? (см. слайд 7) Какие плоские геометрические фигуры составляют ее поверхность? Какая фигура изображена на этом рисунке? Назовите количество видимых элементов фигур. (см. слайд 8) Задание: Достроить изображение фигуры до: 1) куба; 2) треугольной пирамиды (см. слайды 9,10). На прошлом уроке мы познакомились с новыми понятиями: секущей плоскости и сечения многогранника (определение сечения тетраэдра, параллелепипеда) (см. слайд 11) Сечением многогранника называется фигура, образованная линиями пересечения секущей плоскости с гранями многогранника. (Учитель демонстрирует модель диагонального сечения прямоугольного параллелепипеда) Какая плоская фигура может являться сечением куба? (см. слайд 12) Задание: На двух других кубах цветными мелками (маркерами) изобразить сечения, являющиеся треугольником и четырёхугольником. Учитель: Итак, на прошлом уроке мы сделали вывод, что число сторон многоугольника-сечения не может превышать числа всех граней данного многогранника (см. слайд 12) | Ответы уч-ся: поверхность, составленная из четырёх треугольников, называется тетраэдром. поверхность, составленная из двух равных параллелограммов и четырёх параллелограммов называется параллелепипедом Ответы уч-ся (см. табл.) Ребята работают устно с заданиями на развитие пространственного представления: в, е, з куб, квадраты куб, тетраэдр 3,9,7 3,6,4 Учащиеся работают на интерактивной доске и в тетрадях. Ответы: Треугольник, четырёхугольник, пятиугольник и шестиугольник. Два ученика выполняют это задание у доски. |
4 | Основной этап урока. Закрепление новых знаний Методы построения сечений многогранников в школьном курсе опираются на основные аксиомы стереометрии, теоремы, следствия из них, которые мы уже знаем. При построении сечения любым методом, по сути дела, приходится решать две элементарные задачи: (см. слайд 13) 1. Строить точку пересечения прямой (ребра многогранника) с секущей плоскостью. Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную. Тогда искомая точка получается в пересечении найденной прямой с данной. 2. Строить линию пересечения двух плоскостей (секущей плоскости и плоскости грани). Для построения прямой пересечения двух плоскостей обычно находят две точки и проводят через них прямую. Необходимо выделить следующие геометрические утверждения: (см. слайды14,15) А теперь давайте вспомним, как все это выглядит на практике. (см. слайд 16) ЗАДАЧА 1.На ребрах АВ, AD, CD тетраэдра ABCD даны соответственно точки M, N, P так, что прямые NP и AC не параллельны (см. рисунок). Построить сечение тетраэдра плоскостью, проходящей через данные точки. Решение. Для построения сечения достаточно построить линии пересечения плоскости с гранями данного тетраэдра. Построим отрезокNP, являющийся пересечением грани DAC и плоскости МNР,а так же отрезок MN - пересечение МNР и ΔABD. В плоскости ABC мы знаем только одну точку, принадлежащую плоскости МNР, - это точка М. Второй точкой, принадлежащей секущей плоскости и плоскости ABC, является точка К пересечения прямыхNP и АС, из которых первая лежит в плоскости α, а вторая - в плоскости АВС (обе прямые лежат в плоскости ADC и не параллельны по условию) Построив прямую МК, найдем точку Q пересечения этой прямой с ребром ВС. Точка Q - четвертая вершина искомого сеченияMNPQ. (см. слайд 17) Мы условились, отрезок обозначать [ ], а прямую ( ) В дальнейшем ограничимся только описанием построения, указывая в каждом пункте, какая точка или прямая строится, и как она строится. Анализ и доказательство будем проводить по ходу построения устно. | Ученик показывает решение задачи №2 на доске. |
Основной этап урока. Контроль знаний. Самостоятельная работа в группах. (показать решение задач в слайдах) (см. слайд 19, 20, дополнительно 21) | Самостоятельная работа учащихся в группах. | |
5 | Итог урока. Рефлексия. Покажите на пальцах количество баллов, оцените свой уровень усвоения данного материала. Вернёмся к вопросу, заданному в начале урока: «На ваш взгляд, какую роль играют пространственные представления в сфере вашей будущей деятельности?Возможно, вы видите применение знаний именно по этой теме в своей будущей профессиональной деятельности? Поделитесь своим мнением с нами. (открыть доску с макетами сердца, головы и яйца в разрезе) | Ребята показывают на пальцах количество баллов, оценивая свой уровень усвоения данного материала. Высказывают своё мнение. |
6 | Домашнее задание Информация по слайду 22. Оценивает работу некоторых учащихся и благодарит всех за работу. | Записывают задания домашней работы, получают карточки на группы. |
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/334690-reshenie-proektnyh-zadach
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Молодёжная политика в РФ: нормативные и правовые основы реализации»
- «Особенности организации психологической работы с детьми и подростками»
- «Техника безопасности в кабинете биологии: организация и проведение инструктажа»
- «Особенности преподавания изобразительного и декоративно-прикладного искусства в дополнительном образовании детей»
- «Оценка социально-психологической адаптации ребёнка в замещающей семье»
- «Особенности профессиональной деятельности педагога-организатора»
- Педагогика и методика преподавания географии
- Управление специальной (коррекционной) образовательной организацией
- Особенности обучения предмету «Труд (технология)»
- Педагог-психолог дошкольной образовательной организации. Содержание и организация профессиональной деятельности
- Методист образовательной организации: основы педагогической и методической деятельности
- История и обществознание: теория и методика преподавания в образовательной организации

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.