- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Рабочая программа по геометрии 9класс (ФГОС), УМК Л. С. Атанасян
Пояснительная записка, обоснование выбора программы, цели обучения геометрии ,общая характеристика учебного предмета, описание места учебного предмета в учебном плане, описание ценностных ориентиров содержания учебного предмета, личностные, метапредметные и предметные результаты освоения содержания курса, содержание учебного предмета, планируемые результаты изучения курса геометрии, описание материально-технического обеспечения образовательного процесса.
Пояснительная записка.
Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественнонаучного цикла. Развитие логического мышления учащихся при обучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников.
Рабочая программа по геометрии составлена на основании следующих нормативно-правовых документов:
♦ Закона РФ от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
♦ Федеральный государственный образовательный стандарт основного общего образования (ФГОС ООО) (Приказ Министерства образования и науки Российской Федерации от 17.12.2010 № 1897) с изменениями (Приказ Министерства образования и науки Российской Федерации от 29.12. 2014 № 1644); http://fgos.ru/
♦ Программа развития и формирования универсальных учебных действий для общего образования. http://moysosh3.ucoz.ru/FGOS/programma/programma_uud_gotovo.pdf
♦ Федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования»;http://4ege.ru/documents/56987-federalnyy-perechen-uchebnikov-na-2018-2019-uchebnyy-god.html
♦ Учебный план ГБОУ ООШ с.Четыровка на 2018 – 2019 учебный год ;
♦ Положение ГБОУ ООШ с.Четыровка о рабочей программе, учебных курсов, предметов, дисциплин (модулей);
♦ Сборник рабочих программ. Геометрия 7-9 классы. Москва:Просвещение.2014г Составитель Бурмистрова Т.А. https://prosv.ru/_data/assistance/62/84597191-0f4b-11e1-9718-001018890642.pdf
Образование в современных условиях призвано обеспечить функциональную грамотность и социальную адаптацию обучающихся на основе приобретения ими компетентностного опыта в сфере учения, познания, профессионально-трудового выбора, личностного развития, ценностных ориентации и смыслотворчества. Это предопределяет направленность целей обучения на формирование компетентной личности, способной к жизнедеятельности и самоопределению в информационном обществе, ясно представляющей свои потенциальные возможности, ресурсы и способы реализации выбранного жизненного пути.
Рабочая программа ориентирована на использование УМК Л.С. Атанасяна и др
1. Л.С. Атанасян и др. Геометрия 7-9 Учебник для общеобразовательных учреждений/ М.
Просвещение, 2018.
2. Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. Геометрия. Рабочая тетрадь. 9 класс
3.Б.Г.Зив, В.М.Мейер Дидактические материалы. Геометрия. Москва «Просвещение» 2017г
4.Н.Б.Мельникова, Г.А.Захарова Дидактические материалы по геометрии. 8 класс Изд-во
«Экзамен» 2017г
5.Фарков А.В. Тесты по геометрии 8 класс к учебнику Л.С.Атанасяна Изд-во «Экзамен»
2017г.
Обоснование выбора программы
В программе по геометрии Т.А.Бурмистровой оптимальная последовательность изучения тем и разделов с учетом межпредметных и внутрипредметных связей, логики учебного процесса, учет возрастных особенностей обучающихся.
Информация о внесенных изменениях.
Никаких изменений не внесено.
Цели обучения геометрии:
♦ овладение системой геометрических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
♦ интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления и интуиции, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
♦ формирование представлений об идеях и методах математики как универсального языка науки и техники; средства моделирования явлений и процессов;
♦ воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимания значимости математики для научно-технического прогресса;
Предполагается реализовать компетентностный, личностно-ориентированный, деятельностный подходы, которые определяют
задачи обучения:
♦ приобретение знаний и умений для использования в практической деятельности и повседневной жизни;
♦ овладение способами познавательной, информационно-коммуникативной и рефлексивной деятельности
♦ освоение познавательной, информационной, коммуникативной, рефлексивной компетенциями;
♦ освоение общекультурной, практической математической, социально-личностной компетенциями, что предполагает:
-общекультурную компетентность (формирование представлений об идеях и методах математики, о математике как универсальном языке науки, средстве моделирования явлений и процессов; формирование понимания, что геометрические формы являются идеализированными образами реальных объектов);
-практическую математическую компетентность (овладение языком геометрии в устной и письменной форме, геометрическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин; овладения практическими навыками использования геометрических инструментов для изображения фигур, нахождения их размеров);
-социально-личностную компетентность (развитие логического мышления, алгоритмической культуры, пространственного воображения, интуиции, которые необходимы для продолжения образования и для самостоятельной деятельности; формирование умения проводить аргументацию своего выбора или хода решения задачи; воспитание средствами математики культуры личности через знакомство с историей геометрии, эволюцией геометрических идей).
. Формирование целостных представлений о геометрии будет осуществляться в ходе творческой деятельности учащихся на основе личностного осмысления геометрических фактов и явлений. особое внимание уделяется познавательной активности учащихся, их мотивированности к самостоятельной учебной работе. Это предполагает все более широкое использование нетрадиционных форм уроков, в том числе методики деловых и ролевых игр, проблемных дискуссий, межпредметных интегрированных уроков ит.д.
Основные типы учебных занятий: урок изучения нового учебного материала; урок закрепления и применения знаний; урок обобщающего повторения и систематизации знаний; урок контроля знаний и умений.
Планируется использование следующих технологий, направленных на формирование и развитие личности, соответствующей запросам общества и способствуют обеспечению достойного уровня и постоянному совершенствованию качества образования. Это следующие :здоровье-сберегающие технологии; игровые технологии;обучение в сотрудничестве;проблемное обучение; технология уровневой дифференциации; информационно – коммуникативные технологии. Применение здоровьесберегающей технологии позволяет не наносить ущерба здоровью учащихся, способствует воспитанию культуры здорового образа жизни. Использование информационно-коммуникативных технологий на уроках помогает учащимся ориентироваться в информационных потоках окружающего мира, овладеть практическими способами работы с информацией, развивать умения, позволяющие обмениваться информацией с помощью современных технических средств. Уровневая дифференциация позволяет создать условия для самореализации каждого ученика в соответствии с его возможностями. Технология проблемного обучения создаёт условия для самовыражения учащихся, позволяет использовать разнообразные приёмы,
Формы контроля: в 9 классе программой предусмотрено проведение 4 контрольных работ, рассчитанных на 45 минут.
2.Общая характеристика учебного предмета
Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
В курсе геометрии 9-го класса формируется понятие вектора. Особое внимание уделяется выполнению операций над векторами в геометрической форме. Учащиеся дополняют знания о треугольниках сведениями, о методах вычисления элементов произвольных треугольниках, основанных на теоремах синусов и косинусов. Даются систематизированные сведения о правильных многоугольниках, об окружности, вписанной в правильный многоугольник и описанной. Особое место занимает решение задач на применение формул. Даются первые знания о движении, повороте и параллельном переносе. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.
Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет продолжить работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы, и отношения.
В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».
Материал, относящийся к линии «Наглядная геометрия»(элементы наглядной стереометрии), способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.
Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира.Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также при решении практических задач.
Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение какв различных математических дисциплинах, так и в смежных предметах.
Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.
3.Описание места учебного предмета в учебном плане.
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение геометрии отводится 2 часа в неделю, всего 68 часов в год
4.Описание ценностных ориентиров содержания учебного предмета.
Многим людям в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной вычислительной техникой, находить в справочниках и применять нужные формулы, использовать практические приемы геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.
Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний, восприятие и интерпретация разнообразной социальной, экономической, политической информации. Таким образом, практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения - от простейших, усваиваемых в непосредственном опыте людей, до достаточно сложных, необходимых для развития научных и технологических идей.
Без базовой математической подготовки невозможно достичь высокого уровня образования, так как все больше специальностей связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и многие другие). Следовательно, расширяется круг школьников, для которых математика становится профессионально значимым предметом.
В современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках.
В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. С помощью объектов математических умозаключений и правил их конструирования вскрывается механизм логических построений, вырабатываются умения формулировать, обосновывать и доказывать суждения, тем самым развивается логическое мышление. Математике принадлежит ведущая роль в формировании алгоритмического мышления, воспитании умения действовать по заданным алгоритмам и конструировать новые.
В ходе решения задач основной учебной деятельности на уроках математики развиваются творческая и прикладная стороны мышления. Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся точную, экономную и информативную устную и письменную речь, умение отбирать наиболее подходящие языковые (в частности, символические и графические) средства.
Математическое образование вносит свой вклад в формирование общей культуры человека. Её необходимым компонентом является общее знакомство с методами познания действительности, что включает понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Изучение математики развивает воображение, пространственные представления.
История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.
5.Личностные, метапредметные и предметные результаты освоения содержания курса
Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:
личностные:
формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умение распознавать логическинекорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициатива, находчивость, активность при решении геометрических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательныхзадач;
умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное,
дедуктивное и по аналогии) и выводы;
умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решенияучебных и познавательных задач;
умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё
мнение;
формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем,и представлять её в понятной форме; принимать решение
в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
овладение базовым понятийным аппаратом по основнымразделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи
с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства
математических утверждений;
овладение навыками устных, письменных, инструментальных вычислений;
овладение геометрическим языком, умение использоватьего для описания предметов окружающего мира, развитие пространственных представлений и изобразительных
умений, приобретение навыков геометрических построений;
усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейшихпространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
6. Содержание учебного предмета.
9 класс
Векторы. Метод координат
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
О с н о в н а я ц е л ь - научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.
Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).
На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя 'точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.
О с н о в н а я ц е л ь - развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.
Синус и косинус любого угла от 0 до 180 вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.
Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.
Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.
Длина окружности и площадь круга
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
О с н о в н а я ц е л ь - расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.
В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2п-угольника, если дан правильный п-угольник.
Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь - к площади круга, ограниченного окружностью.
Движения
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
О с н о в н а я ц е л ь - познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.
Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.
Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.
Начальные сведения из стереометрии
Предмет стереометрии. Геометрические тела и поверхности.
Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.
О с н о в н а я ц е л ь - дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.
Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конyca, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии.
Об аксиомах геометрии. Беседа об аксиомах геометрии.
О с н о в н а я ц е л ь - дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.
В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.
9 класс
Номерпараграфа | Содержание материала | Кол-во часов | Характеристика основных видов деятельности ученика (на уровне учебных действий) |
Повторение курса геометрии 8 класса | 2 | ||
ГлаваIX.Векторы | 8 | Формулировать определения и иллюстрировать понятиявектора, его длины, коллинеарных и равных векторов; мотивировать введение понятий и действий, связанных с векторами, соответствующими примерами, относящимися к физическим векторным величинам; применять векторы и действия над ними при решении геометрических задач | |
1 2 3 | Понятие вектора Сложение и вычитание векторов Умножение вектора на число. Применение векторов к решению задач | 2 3 3 | |
ГлаваX.Метод координат | 10 | Объяснять и иллюстрировать понятия прямоугольной системы координат, координат точки и координат вектора; выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой | |
1 2 3 | Координаты вектора Простейшие задачи в координатах Уравнения окружности и прямой Решение задач Контрольная работа № 1 по теме : «Метод координат» | 2 3 3 1 1 | |
ГлаваXI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов | 11 | Формулировать и иллюстрировать определения синуса,косинуса, тангенса и котангенса углов от 0 до 180°; выводить основное тригонометрическое тождество и формулы приведения; формулировать и доказывать теоремы синусов и косинусов, применять их при решении треугольников; объяснять, как используются тригонометрические формулы в измерительных работах на местности; формулировать определения угла между векторами и скалярного произведения векторов; выводить формулу скалярного произведения через координаты векторов;формулировать и обосновывать утверждение о свойствахскалярного произведения; использовать скалярное произведение векторов при решении задач | |
1 2 | Синус, косинус, тангенс, котангенс угла Соотношения между сторонами и углами треугольника Скалярное произведение векторов Решение задач Контрольная работа № 2 | 3 4 2 1 1 | |
ГлаваXII.Длина окружности и площадь круга | 12 | Формулировать определение правильного многоугольника; формулировать и доказывать теоремы об окружностях, описанной около правильного многоугольника и вписанной в него; выводить и использовать формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности; решать задачи на построение правильных многоугольников; объяснять понятия длины - окружности и площади круга; выводить формулы для вычисления длины окружности и длины дуги, площади круга и площади кругового сектора; применять эти формулы при решении задач | |
1 2 | Правильные многоугольники Длина окружности и площадь круга Решение задач Контрольная работа № 3 | 4 4 3 1 | |
ГлаваXIII.Движения | 8 | Объяснять, что такое отображение плоскости на себя и в каком случае оно называется движением плоскости; объяснять, что такое осевая симметрия, центральнаясимметрия, параллельный перенос и поворот; обосновывать, что эти отображения плоскости на себя являются движениями; объяснять, какова связь между движениями и наложениями; иллюстрировать основные виды движений, в том числе с помощью компьютерных программ | |
1 2 | Понятие движения Параллельный перенос и поворот Решение задач Контрольная работа № 4 | 3 3 1 1 | |
ГлаваXIV. Начальные сведения из стереометрии | 8 | Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали, какой многогранник называется выпуклым, что такое n-угольная призма, её основания, боковые грани и боковые рёбра, какая призма называется прямой и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой параллелепипед называется прямоугольным; формулировать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоугольного параллелепипеда; объяснять, что такое объём многогранника; объяснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рёбра и высота пирамиды, какая пирамида называется правильной, что такое апофема правильной пирамиды, объяснять, какое тело называется цилиндром, что такое его ось, высота, основания, радиус, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём и площадь боковой поверхности цилиндра; объяснять, какое тело называется конусом, что такое его ось, высота, основание, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём конуса и площадь боковой поверхности; объяснять, какая поверхность называется сферой и какое тело называется шаром, что такое радиус и диаметр сферы (шара), распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар | |
1 2 | Многогранники Тела и поверхности вращения | 4 4 | |
Планируемые результаты изучения курса геометрии
Наглядная геометрия
Выпускник научится:
распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
вычислять объём прямоугольного параллелепипеда.
Выпускник получит возможность:
вычислять объёмы пространственных геометрическихфигур, составленных из прямоугольных параллелепипедов;
углубить и развить представления о пространственныхгеометрических фигурах;
применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
Выпускник научится:
пользоваться языком геометрии для описания предметовокружающего мира и их взаимного расположения;
распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяяопределения, свойства и признаки фигур и их элементов,
отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
оперировать на базовом уровне понятиями геометрических фигур;
оперировать с начальными понятиями тригонометриии выполнять элементарные операции над функциями углов;
решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяяизученные методы доказательств;
решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
решать планиметрические задачи на нахождение геометрических величин по образцам или алгоритмам, решать простейшие планиметрические задачи в пространстве.
извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;
применять для решения задач геометрические факты, если условия их применения заданы в явной форме;
Выпускник получит возможность:
овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
научиться решать задачи на построение методом геометрического места точек и методом подобия;
приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
научиться использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.
Геометрические построения
Выпускник научится:
1)изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.
Выпускник получит возможность:
2)выполнять простейшие построения на местности, необходимые в реальной жизни.
Геометрические преобразования
Выпускник научится:
1)строить фигуру, симметричную данной фигуре относительно оси и точки.
Выпускник получит возможность:
2)распознавать движение объектов в окружающем мире; симметричные фигуры в окружающем мире.
Измерение геометрических величин
Выпускник научится:
использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
вычислять длину окружности, длину дуги окружности;
решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства);
выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;
применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.
Выпускник получит возможность:
10)вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
11)вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
12)приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решениизадач на вычисление площадей многоугольников.
13)вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.
Координаты
Выпускник научится:
вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
использовать координатный метод для изучения свойствпрямых и окружностей;
определять приближенно координаты точки по ее изображению на координатной плоскости
Выпускник получит возможность:
овладеть координатным методом решения задач на вычисление и доказательство;
приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».
Векторы
Выпускник научится:
оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя принеобходимости сочетательный, переместительный и распределительный законы;
вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
овладеть векторным методом для решения задач на вычисление и доказательство;
приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».
8.Описание материально-технического обеспечения образовательного процесса.
Технические средства обучения
Компьютер, медиапроектор.
Список литературы для учащихся:
1.Геометрия 7-9 Учебник для общеобразовательных учреждений/ Л.С. Атанасян и др. М.
Просвещение, 2018.
2. Рабинович Е. М. Геометрия на готовых чертежах. 7-11 классы/ Просвещение, 2016.Зив Б.Г.
3. Б.Г.Зив, В.М.Мейер Дидактические материалы. Геометрия. Москва «Просвещение» 2017г
4.Н.Б.Мельникова, Г.А.Захарова Дидактические материалы по геометрии. 8 классИзд-во «Экзамен»
2017г
5. Фарков А.В. Тесты по геометрии 8 класс к учебнику Л.С.Атанасяна Издательство «Экзамен»
2017г.
Список литературы для учителя:
Атанасян Л.С, Бутузов В.Ф., Глазков Ю.А.,Некрасов В.Б., Юдина И.И. Изучение геометрии в
7—9 классах: Методическое пособие. М.: Просвещение, 2015.
Атанасян Л.С., Бутузов В.Ф., Кадомцев СБ.,Позняк Э.Г., Юдина И.И. Геометрия. 7—9 классы:
Учебник для общеобразовательных учреждений.М.: Просвещение, 2015
Бурмистрова Т.А. Геометрия. 7—9 классы: Сборник рабочих программ. М.: Просвещение, 2014.
4.Гаврилова Н.Ф. Геометрия. 9 класс: Контрольно-измерительные материалы. М.: ВАКО.
5.Гаврилова И. Ф. Геометрия. 9 класс: Поурочные разработки. М.: ВАКО, 2016.
Зив Б.Г., Мейлер В.М. Геометрия. 9 класс: Дидактические материалы. М.: Просвещение.2017
Перечень Интернет ресурсов, цифровые образовательных ресурсов и других электронных информационных источников:
1. http://school-collection.edu.ru/ Цифровые образовательные ресурсы (ЦОР)
2. www.math.ru. Интернет - поддержка учителей математики, материалы для уроков, официальные документы Министерства образования и науки, необходимые в работе.
3. www.it-n.ru. Сеть творческих учителей.
4. www.etudes.ru. Математические этюды. На сайте представлены этюды, выполненные с использованием современной компьютерной 3D-графики, увлекательно и интересно рассказывающие о математике и ее приложениях.
Дополнительная литература для учителя.
Зив Б.Г. Задачи по геометрии: пособие для учащихся 7-11 классов образоват. организаций / Б.Г. Зив, В.М. Мейлер. – М.: Просвещение, 2015.
Звавич Л.И. Контрольные и проверочные работы по геометрии 7-9 классы / Л. И. Звавич ( и др.) – М.: Просвещение, 2001
Кукарцева Г.И. Сборник задач по геометрии в рисунках и тестах. 7-0 классы / Г.И. Кукарцева. – М.: АКВАРИУМ ЛТД. 2001.
Саврвсова С.М.: Упражнения по планиметрии на готовых чертежах./С.М. Саврасова, Г.А. Ястребинецкий. – М.: Просвещение, 2014.
Худадатова С.С. Математика в ребусах, кроссвордах, чайнвордах, криптограммах. 9 класс /С.С. Худадатова. – М.: Школьная пресса, 2003.
.
Дополнительная литература для учащихся.
Шуба М.Ю. Занимательные задания в обучении математике / М.Ю. Шуба. – М.: Просвещение,1998.
Энциклопедия для детей : в 15 т. Математика / под ред. М.Д. Аксёнова. – М.: Аванта+,1998.
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/369600-rabochaja-programma-po-geometrii-9klass-fgos-
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Учитель физики и астрономии: современные методы и технологии преподавания по ФГОС ООО и ФГОС СОО»
- «Управленческая деятельность начальника лагеря с дневным пребыванием детей на базе общеобразовательной организации»
- «Ранняя профориентация детей дошкольного возраста в условиях реализации ФГОС ДО»
- «ОГЭ по литературе: содержание экзамена и технологии подготовки обучающихся в соответствии с ФГОС»
- «Логопедическая работа по преодолению речевых нарушений у детей дошкольного возраста»
- «Подготовка к ЕГЭ по математике в условиях реализации ФГОС: содержание экзамена и технологии работы с обучающимися»
- Физическая культура. Педагогическая деятельность по проектированию и реализации образовательного процесса
- Менеджмент социальной работы и управление организацией социального обслуживания
- Английский язык: теория и методика преподавания в образовательной организации
- Теоретические и практические аспекты оказания экскурсионных услуг
- Теория и методика обучения астрономии в образовательной организации
- Организационно-педагогическое обеспечение воспитательного процесса в образовательной организации

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.