- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Статья Лёгкий перевод систем счисления
Системы счисления: двоичная, восьмеричная, десятичная, шестнадцатеричная.
Система счисления – это способ записи чисел. Обычно, числа записываются с помощью специальных знаков – цифр (хотя и не всегда). Если вы никогда не изучали данный вопрос, то, по крайней мере, вам должны быть известны две системы счисления – это арабская и римская. Следует отметить, важную роль нуля. «Открытие» этой цифры в истории человечества сыграло большую роль в формировании позиционных систем счисления.
Каждая позиционная система использует определенный алфавит цифр и основание. В позиционных системах счисления основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения цифр соседних разрядов числа.
«Лёгкий перевод двоичной, восьмеричной, шестнадцатеричной систем счисления».
Автор: Гребенников Александр Николаевич
Должность: учитель информатики
Учебное заведение: ГБОУ школа – интернат № 67
Населённый пункт: Пушкинский район Санкт–Петербурга
Наименование материала: статья
Тема: «Системы счисления: двоичная, восьмеричная, десятичная, шестнадцатеричная».
Системы счисления: двоичная, восьмеричная, десятичная, шестнадцатеричная.
Система счисления – это способ записи чисел. Обычно, числа записываются с помощью специальных знаков – цифр (хотя и не всегда). Если вы никогда не изучали данный вопрос, то, по крайней мере, вам должны быть известны две системы счисления – это арабская и римская. Следует отметить, важную роль нуля. «Открытие» этой цифры в истории человечества сыграло большую роль в формировании позиционных систем счисления.
Каждая позиционная система использует определенный алфавит цифр и основание. В позиционных системах счисления основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения цифр соседних разрядов числа.
В первой используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (10 цифр) - это позиционная система счисления. А во второй – I, V, X, L, C, D, M (1, 5, 10, 50, 100, 500, 1000) - это непозиционная система счисления.
В позиционных системах счисления количество, обозначаемое цифрой в числе, зависит от ее позиции, а в непозиционных – нет.
Например:
11 – здесь первая единица обозначает 10, а вторая – 1.
I I – здесь обе единицы обозначают единицу.
Основание системы счисления – это количество знаков, которое используется для записи цифр.
Разряд - это позиция цифры в числе. Разрядность числа - количество цифр, из которых состоит число (например, 362 - трехразрядное число, 1001101 - восьмиразрядное число). Разряды нумеруются справа на лево (например, в числе 793 семёрка занимает первый разряд, а тройка - третий).
Итак, в позиционной системе счисления числа записываются таким образом, что каждый следующий (движение справа на лево) разряд больше другого на степень основания системы счисления.
456, 567, 678 – здесь цифра 6 в первом случае обозначает 6, во втором – 60, а в третьем – 600.
XXV, XVI, XII – здесь, где бы ни стояла цифра X, она везде обозначает десять единиц. Другими словами, величина, обозначаемая знаком X, не зависит от его позиции.
В мире наиболее распространены позиционные системы счисления. Помимо знакомой всем с детства десятичной (где используется 10 цифр от 0 до 9), в технике широкое распространение нашли такие системы счисление как двоичная (используются цифры 0 и 1), восьмеричная (используются 8 цифр от 0 до 7), шестнадцатеричная (используются 16 цифр 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).
Сложение, умножение и другие математические операции в позиционных системах счисления выполнить легче, чем в непозиционных, т.к. математические операции осуществляются по несложным алгоритмам (например, умножение в столбик, сравнение двух чисел).
Одно и тоже число (значение) можно представить в различных системах счисления. Представление числа при этом различно, а значение остается неизменным.
Системы счисления | |||
Десятичная | Двоичная | Восьмеричная | Шестнадцатеричная |
0 | 0000 | 0 | 0 |
1 | 0001 | 1 | 1 |
2 | 0010 | 2 | 2 |
3 | 0011 | 3 | 3 |
4 | 0100 | 4 | 4 |
5 | 0101 | 5 | 5 |
6 | 0110 | 6 | 6 |
7 | 0111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Двоичная система счисления.
Почему двоичная система счисления так распространена?
Двоичной системой счисления люди начали пользоваться очень давно. Древние племена Австралии и островов Полинезии использовали эту систему в быту. Так, полинезийцы передавали необходимую информацию, выполняя два вида ударов по барабану: звонкий и глухой. Это было примитивное представление двоичной системы счисления.
Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания. Поэтому для кодирования информации в компьютере вместо привычной десятичной системы счисления используется двоичная система счисления.
В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)
Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.
В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.
Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.
Для обозначения системы счисления, в которой представляется число, используют нижний индекс, указывающий основание системы. Например, 11011 2 — число в двоичной системе счисления.
Цифры в двоичном числе являются коэффициентами его представления в виде суммы степеней с основанием 2, например:
2 1 0
101 2 =1⋅2 2 +0⋅2 1 +1⋅2 0 .
В десятичной системе счисления это число будет выглядеть так:
2 1 0
110 2 =4+0+1=5 .
Для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, равное нулю. Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.
Пример:
Переведём десятичное число 15в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:
15 | 2 | ||
-14 | 7 | 2 | |
1 | -6 | 3 | 2 |
1 | -2 | 1 | |
1 |
Получили15 10 =1111 2.
Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.
Перевод чисел из двоичной системы счисления в десятичную.
Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.
В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:
1567 = 1000 + 500 + 60 + 7
Можно пойти еще дальше и разложить так:
3 2 1 0
156710= 1 * 103 + 5 * 102 + 6 * 101 + 7 * 100
Посмотрите на эту запись внимательно. Здесь цифры 1, 5, 6 и 7 - это набор цифр из которых состоит число 1567. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.
Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:
6 5 4 3 2 1 0
10001012 = 1*26 + 0*25 + 0*24 + 0*23 + 1*22 + 0*21 + 1*20
Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:
1*26 + 0*25 + 0*24 + 0*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 0 + 4 + 0 + 1 = 6910
Т.е. число 10001001 по основанию 2 равно числу 69 по основанию 10. Записать это можно так:
10001012 = 6910
Восьмеричная система счисления
Итак, современное «железо понимает» лишь двоичную систему счисления. Однако человеку трудно воспринимать длинные записи нулей и единиц с одной стороны, а с другой – переводит числа из двоичной в десятичную систему и обратно, достаточно долго и трудоемко. В результате, часто программисты используют другие системы счисления: восьмеричную и шестнадцатеричную. И 8 и 16 являются степенями двойки, и преобразовывать двоичное число в них (так же как и выполнять обратную операцию) очень легко.
В восьмеричной системе счисления используется восемь знаков-цифр (от 0 до 7). Каждой цифре соответствуют набор из трех цифр в двоичной системе счисления:
000 – 0
001 – 1
010 – 2
011 – 3
100 – 4
101 – 5
110 – 6
111 – 7
Для преобразования двоичного числа в восьмеричное достаточно разбить его на тройки (триады) и заменить их соответствующими им цифрами из восьмеричной системы счисления. Разбивать на тройки нужно начинать с конца, а недостающие цифры в начале заменить нулями. Например:
222120
4 2 1 4 2 1 4 2 1 4 2 1 (Складываем цифры над единицами)
1 1101012 = 1 011 101 = 001 110 101 = 1 6 5 = 1658
Т.е число 1011101 в двоичной системе счисления равно числу 165 в восьмеричной системе счисления. Или 11101012 = 1658.
Обратный перевод. Допустим, требуется перевести число 1038 (не заблуждайтесь! 100 в восьмеричной системе – это не 103 в десятичной) в двоичную систему счисления.
222120
4 2 1 4 2 1 4 2 1 4 2 1 (1=421, 0=421, 3=42+1 зелёные – 0, красные – 1)
1038 = 1 0 3 = 001 000 011 = 001000011 = 10000112
Перевод восьмеричного числа в десятичное можно осуществить по уже знакомой схеме:
2 1 0
6728 = 6 * 82 + 7 * 81 + 2 * 80 = 6 * 64 + 56 + 2 = 384 + 56 + 2 = 44210
2 1 0
1008 = 1 * 82 + 0 * 81 + 0 * 80 = 6410
Шестнадцатеричная система счисления
Шестнадцатеричная система счисления, так же как и восьмеричная, широко используется в компьютерной науке из-за легкости перевода в нее двоичных чисел. При шестнадцатеричной записи числа получаются более компактными.
В шестнадцатеричной системе счисления используются цифры от 0 до 9 и шесть первых латинских букв – A (10), B (11), C (12), D (13), E (14), F (15).
При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда (тетрады), начиная с конца. В случае, если количество разрядов не делится нацело, то первая четверка дописывается нулями впереди. Каждой четверке соответствует цифра шестнадцатеричной системе счисления:
Например:
23222120
84 2 1 8 4 2 1 8 4 2 1 8 4 2 1 (Складываем цифры над единицами)
_11011010101 = 0110 1101 0101 = 6 13 5 = 6D5
Если потребуется, то число 6D5 можно перевести в десятичную систему счисления следующим образом (D следует заменить на соответствующее данному символу число в десятичной системе счисления – это 13):
2 1 0
6D516 = 6 * 162 + 13 * 161 + 5 * 160 = 6 * 256 + 208 + 5 = 174910
Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи - это FF.
1 0
FF16 = 15 * 161 + 15 * 160 = 240 + 15 = 255
255 – это максимальное значение одного байта, равного 8 битам: 1111 1111 = FF. Поэтому с помощью шестнадцатеричной системы счисления очень удобно кратко (с помощью двух цифр-знаков) записывать значения байтов. Внимание! Состояний у 8-ми битного байта может быть 256, однако максимальное значение – 255. Не забывайте про 0 – это как раз 256-е состояние
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/381612-statja-ljogkij-perevod-sistem-schislenija
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Профилактика и устранение буллинга в СПО в соответствии с современными требованиями»
- «ОГЭ по физике: содержание экзамена и технологии подготовки обучающихся в соответствии с ФГОС»
- «ОГЭ 2025 по информатике: содержание экзамена и технологии подготовки обучающихся в соответствии с ФГОС»
- «Подготовка к ЕГЭ по информатике в условиях реализации ФГОС: содержание экзамена и технологии работы с обучающимися»
- «Организация работы с обучающимися с ОВЗ в практике учителя английского языка»
- «Центр «Точка роста»: реализация образовательной программы по предмету «Химия»
- Физика: теория и методика преподавания в образовательной организации
- Менеджмент в дополнительном образовании детей
- Педагогическое образование: теория и методика преподавания мировой художественной культуры
- Физическая культура. Педагогическая деятельность по проектированию и реализации образовательного процесса
- Педагогика и методика преподавания истории и обществознания
- Педагогика и методика преподавания физической культуры

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.