Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
11.12.2019

Мeтoдичeскиe приёмы деятельности творческого характера на уроках математики

В процессе обучения математике уделяется особое внимание развитию у учащихся качеств мышления, специфичных для мышления математического. Органическое сочетание и повышенная активность разнообразных компонентов мышления вообще и различных его качеств проявляются в особых способностях человека, дающих ему возможность успешно осуществлять деятельность творческого характера в разнообразных областях науки. Математические способности – это определенная совокупность некоторых качеств творческой личности, сформированных и применяемых в процессе математической деятельности.

Содержимое разработки

Мeтoдичeскиe приёмы деятельности творческого характера на уроках математики.

В процессе обучения математике, естественно уделять особое внимание развитию у учащихся качеств мышления, специфичных для мышления математического. Органическое сочетание и повышенная активность разнообразных компонентов мышления вообще и различных его качеств проявляются в особых способностях человека, дающих ему возможность успешно осуществлять деятельность творческого характера в разнообразных областях науки. Математические способности – это определенная совокупность некоторых качеств творческой личности, сформированных и применяемых в процессе математической деятельности.

Итак, можно сказать, что творчество – природная функция мозга, творчество зависит от условий обучения.

Создание этих условий одно из важнейших задач педагога. Одним из них является выбор формы организации работы и типа урока по технологии - творческого развития (урок анализа домашнего задания, урок выравнивания знаний, урок постановки учебной задачи, урок решения учебной задачи, урок формирования общего способа, урок моделирования содержания материала или способов решения, урок самоконтроля, урок самооценки, урок учебной деятельности (творческого развития), урок усвоения групповых форм учебной деятельности.

Фронтальная работа.

Фронтальная работа может осуществляться в нескольких видах: подача нового материала; устные упражнения – как средство для повторения и моделирования проблемы; работа с классом. Значение этого метода достаточно велико, но для повышения эффективности обучения необходимо комбинировать его с другими формами. Задания для фронтальной работы могут быть направлены на активизацию процесса памяти, процесса логического мышления на базе имеющихся навыков и знаний, творческой деятельности и поиска новых знаний.

Рассмотрим несколько примеров реализации личностного подхода во фронтальной работе

Пример 1. Для примера выберем тему «Прогрессии» Покажем план урока подачи нового материала в классах различного типа и уровня развития.

1. Класс сильный, думающий, увлеченный математикой.

Сама математика как предмет держат его внимание. Потому, с одной стороны, в таком классе легко работать, но с другой стороны, есть и сложности. Особенно если тема простая, а рассматриваемая нами тема «Прогрессии» не содержит сложного материала.

Если идти по пути построения урока, достойного развития детей, то можно начать изучение двух тем параллельно. Например, дается определение арифметической прогрессии, приводятся примеры, и тут же рядом записывается определение геометрической прогрессии, составленное по аналогии самими учащимися. Действительно, если есть арифметическая прогрессия, то, наверное, существует и геометрическая.

Затем встает вопрос о формуле любого числа. Здесь сами ребята догадаются о ее структуре и докажут справедливость. Учителю придется подсказать лишь каким методом это сделать. Уместен будет разговор о методе математической индукции, хотя бы в качестве информации. Последними можно рассмотреть характеристические свойства. При всем этом нельзя забывать, что даже этот круг учеников нуждается в отработке элементарных операций. Поэтому далее целесообразно включить устную работу, направленную на отработку специальных умений по этой теме. Затем решить по одной задаче на характеристическое свойство каждой из прогрессий. Вместо задач можно сделать экскурс в историю. Рассказать о том, что примеры отдельных арифметических и геометрических прогрессий можно встретить еще и в древневавилонских и египетских надписях, в Древней Греции. Можно упомянуть и о бесконечных рядах и их применение.

2. Класс шумный, думающий, заинтересованный предметом, но с недостаточно развитой самостоятельностью действий. В этом случае работа будет носить фронтально-индивидуальный характер. Учащиеся, отвечающие вышеизложенной характеристике, любят учиться, но испытывают тягу к получению быстрых результатов. Однако с большим интересом воспринимают информацию о самих себе: о своей памяти, внимании, работоспособности. Учитель должен завладеть вниманием учащихся и удержать его до конца урока. Класс с готовностью выполняет четкие указания учителя и этот момент надо непременно использовать. Но необходимо не трафаретное начало. Поэтому учащихся можно сразу озадачить вопросами: какие анализаторы человек использует при восприятии информации? Дальше можно сказать, что основными являются анализаторы запаха, вкуса, осязания, слуха. Для рационального восприятия необходимо знать свой доминирующий анализатор, обычно зрение или слух. Именно его следует использовать в первую очередь. Для выявления учеников предлагаются задания следующего типа.

На доске записаны числа 6,8,10,12,14,16,18,20; -12; -9; -6; -3; 0; 3; 6; 9; 12.

Учащиеся после минутного рассмотрения должны воспроизвести запись в тетрадях, что удается не каждому. Далее им предлагается ряд равенств, для запоминания которых включается не только зрительная, но и логическая память.

Затем делается акцент на слуховую память: медленно читается определение, которое необходимо записать после прослушивания.

После паузы читается определение еще раз, и все проверяют запись. После этого можно сделать общий вывод принципов рационального восприятия информации: постановки цели: что люди мыслят под этим понятием, хочу про него знать все; использование основного анализатора; интерес. Далее дети читают в своем темпе параграф по теме. Завершает урок ряд задач подобранных учителем.

Пример 2. Устные упражнения.

Устные упражнения заслуживают особого внимания. Они эффективны кажущейся легкостью, эмоциональностью, действуют на учащихся мобилизующе, способствуют развитию внимания и памяти, но требуют от школьников большого умственного напряжения, поэтому могут быстро их утомить.

На ряду с чисто устными практикуются также полуустные (зрительно-слуховые), когда задания записаны на доске или проецируется на экран. Некоторые мы рассматривали в предыдущем примере, когда с их помощью вводился новый материал.

Фронтальную работу можно использовать так же при текущем контроле знаний и умений учащихся. Например, в форме математического диктанта, при чем задания можно давать повариантно: первый вариант доказывает свойство умножения степеней с одинаковыми основаниями, второй – свойство возведения степени в степень; в качестве второго задания даются не сложные примеры на вычисление и т.п.

Групповая работа.

Групповая работа – одна из форм активизации учащихся. Под групповой работой понимают такое построение работы, при которой класс делится на группы по 3-8 человек (чаще по четыре человека) с целью выполнения той или иной учебной задачи.

Групповая работа так же представляет много возможностей для индивидуализации, особенно, если группы составлены из схожих по какому-либо признаку учащихся, причем тогда для каждой группы подбираются специальные задания.

В малой группе учащийся находится в более благоприятных условиях, чем при фронтальной работе. Группы могут быть сформированы как учителем (на основании уровня знаний и/или умственных способностей), так и по пожеланию учащихся.

Групповая работа достаточно эффективна, однако следует следить за тем, чтобы более сильные и старательные не заглушали инициативу более пассивных. Целесообразно проводить работу также с относительно стабильными группами, что позволяет оперативно распределять задания различной степени сложности, причем по результатам обучения возможен переход из одной группы в другую. И так групповая учебная деятельность – это организованная система активности взаимодействующих учащихся, направленная на целенаправленное решение поставленной учебной задачи.

Рассмотрим систему задач разной тематики для возможного решения в группах. Задачи подобраны по следующему принципу: по каждой теме предлагается по две задачи, причем одно из них является более сложной в смысле выявления способа решения или выделения основных отношений и связей и требует творческого подхода к решению.

1. Упростить выражение

Решение. Тактически нецелесообразно складывать сразу все дроби.

Сложим первые две:

Прибавим третью:

Затем четвертую:

и пятую:

Можно предложить и другой способ решения.

Легко проверить, что причем аналогичные равенства справедливы и для других дробей. Заменив каждую дробь. Входящую в выражение на соответствующую разность получим:

Ответ: .

2. Докажем равенство

Решение. Преобразуем левую часть данного равенства:

3.Решить уравнение

Решение. Вместо стандартного освобождения от знаменателя, приведения подобных слагаемых и решение полученного квадратного уравнения, объединим дроби в пары и произведем действия внутри пар:

Ответ:

4. Решить уравнение:

.

Решение.

Замена , тогда , а . Подставляем полученные выражения в исходное уравнение, имеем:

;;.

не удовлетворяет условию .

Возвращаемся к:

;.

Ответ:

5. Решить систему уравнений:

Решение. Выразим, из второго уравнения :

и подставляем в первое и третье уравнения системы:

Выразив через и подставив во второе уравнение, получим:

Ответ: , .

5. Решить систему уравнений:

Решение. Предложенная система является симметричной: замена на , а на не меняет каждого из уравнений системы. Используем замену переменных: .

Поскольку , относительно и получим следующую систему:

Для и соответственно будем иметь две системы:

Вторая система не имеет действительных корней, первая имеет два решения: (1;2); (2;1).

Ответ: (1;2); (2;1).

7. Решить неравенство:

Решение.

Ответ: .

8. Решить неравенство:

Решение.

Ответ: .

Стандартная схема решения текстовых задач состоит из трех этапов:

Выбор неизвестных.

Составление уравнений (неравенств).

Нахождение нужного неизвестного или нужной комбинации неизвестных.

Рассмотрим несколько примеров.

9. От пристани А одновременно отправились вниз по течению катер и плот. Катер спустился вниз по течению на 96км, затем повернулся обратно и вернулся в А через 14ч. Найти скорость катера в стоячей воде и скорость течения, если известно, что катер встретил плот на обратном пути на расстоянии 24км от А.

Решение.

I способ (алгебраический).

1) Пусть (км/ч) скорость катера в стоячей воде, у (км/ч) – скорость течения.

2) Составим уравнения. Поскольку скорость катера при движении по течению , а против течения , то на основании того, что сказано во второй фразе условия, получим:или

Вторая часть последней фразы дает нам (плот прошел до встречи 24км, катер 96 – 24 =72км на обратном пути).

Таким образом, имеем систему уравнений

Подставляем в I уравнение системы

Ответ: скорость катера в стоячей воде 14км/ч, скорость течения 2км/ч.

II способ (арифметический).

Итак, если катер удаляется от плота или приближается к нему, то его скорость относительно плота равна скорости катера в стоячей воде, меняется лишь направление этой скорости. Следовательно, катер удаляется от плота за то же время, что и приближается к нему, т.е. путь в 96км пройден за то же время, что и путь 72км (против течения).

96 : 72 = 4 : 3- отношение скорости катера по течению к скорости катера против течения.

Весь путь занял 14ч. Разделим число 14 на части пропорционально 3:4 :

катер шел по течению;

катер шел против течения.

96 : 6 =16 (км/ч) – скорость по течению;

96 : 8 =12 (км/ч) – скорость против течения;

- скорость течения;

- собственная скорость катера.

Ответ: 2км/ч; 14км/ч.

Как видно из решения задачи 9 «арифметический» способ решения зачастую удобнее, так как для него характерна достаточность знаний и умений, которыми располагает учащийся, окончивший начальную школу плюс, конечно развитый логический аппарат.

10. Лошадь съедает копну сена за 2 дня, корова может съесть такую же копну за 3 суток, овца за 6 суток. За какое время они съедят эту копну вместе?

Решение.

Задача может даваться с 6 класса. Итак, если лошадь съедает копну сена за 2 дня, то за один день она съест часть копны, аналогично корова часть копны, а овца часть копны.

За один день вместе они съедают копны сена, т.е. всю.

Ответ: 1 день.

Функции

Наибольшее значение при . Возвращаясь к , получим, что при

Ответ: наибольшее значение .

Почти вся теория квадратного трехчлена основывается на приеме, называемом «выделение полного квадрата»:

- дискриминант квадратного уравнения.

Если , то уравнение имеет два корня,

,то уравнение имеет1 корень (2 совпадающих);

, уравнение не имеет действительных корней.

11. Доказать, что при любом уравнение

имеет решения.

Процесс нахождения дискриминанта и доказательства, что он положителен достаточно трудоемкий, поэтому попробуем другой метод решения.

Пусть .

при любом .

Т.о. уравнение всегда имеет решение, причем если , то уравнение имеет два корня; при этом всегда имеется корень, удовлетворяющий неравенству .

12. Пусть и корни уравнения . Выразить через и .

Решение.

Необходимо выразить через и :

По теореме Виета

тогда

Ответ: .

13. Определить все значения параметра , при которых уравнение имеет 1 корень.

Решение.

В условие не сказано, что рассматривается квадратное уравнение, поэтому рассмотрим случай

Остальные значения параметра получим из уравнения .

Ответ:

Простейший прием нахождения наибольших значений, основанный на свойствах квадратичных функций состоит в том, что исследуемая функция при помощи преобразований или замены переменной приводится к квадратичной, после чего выделяется полный квадрат.

14.Найти наибольшее значение функции

Решение.

Положим , тогда Отсюда Итак, после замены получим, что надо найти наибольшее значение

15.Найти наибольшее и наименьшее значения функции .

Решение.

Рассмотрим данное неравенство как уравнение с неизвестным и параметром .

После преобразований получим

Для того, чтобы уравнение имело решение необходимо и достаточно, чтобы

Отсюда наименьшее значение функции , наибольшее .

Ответ:

Как видно из решений последних задач на нахождение наибольшего и наименьшего значений иногда удобнее рассматривать функцию как уравнение с неизвестным , в котором необходимо установить при каких это уравнение имеет решение. Рассмотрим еще один пример, в котором работает эта идея с небольшими вариациями.

16. Найти наибольшее и наименьшее значение выражения , если

.

Решение.

Положим . Подставим полученное выражение в (1):

Ответ: наибольшее значение выражения равно ; наименьшее - .

Рассмотрим один из самых универсальных методов доказательства – методом математической индукции.

17. Доказать, что при любом натуральном число делится на 7.

Решение.

Обозначим .

При- делится на 7.

Пусть делится на 7.

Имеем

Последнее число делится на 7, т.к. представляет собой разность двух целых чисел, которые делятся на 7, ч.т.д.

17. Доказать тождество:

Решение.

1)При равенство выполняется.

2)Предположим, что равенство выполняется при

При имеем:

ч.т.д.

Индивидуальная работа учащихся.

Поскольку внеклассная индивидуализация осуществляется в основном в форме самостоятельной работы, следует, естественно, учитывать требования, исходящие из методики самостоятельной работы.

Самостоятельная работа учащихся – это такой способ учебной работы, где 1) учащимся предлагаются учебные задания и руководства для их выполнения; 2) работа проводится без непосредственного участия учителя, но под его руководством; 3) выполнение работы требует от учащегося умственного напряжения.

С точки зрения организационных основ самостоятельную работу можно разделить на: 1) самостоятельную работу в школе и 2) самостоятельную работу, выполняемую за пределами школы, в т. ч. и дома. Самостоятельная работа в школе может проводиться в рамках урока, зачета, семинара, практического занятия и т. д. На основе другого логического членения можно выделить еще два вида самостоятельной работы: 1) индивидуальную и 2) групповую.

В ходе самостоятельной работы каждый ученик получает конкретное задание, которое предполагает и выполнение определенной письменной работы. В этом случае можно проверить степень участия ученика в выполнении этого задания. Самостоятельная работа позволяет работать и в индивидуальном темпе и стиле.

Учебные задания для самостоятельной работы.

Учебные задания для самостоятельной работы весьма разнообразны. Их можно в основном делить на следующих 4 логических основаниях: 1) по методу самостоятельной работы учащихся (например, наблюдения, упражнения, работа с текстом учебника); 2) по звеньям учебного процесса (задания на восприятие, систематизацию, закрепление и повторение учебного материала); 3) по характеру познавательной деятельности учащегося (репродуцирующие и творческие задания); 4) по характеру руководства (подробное или менее подробное инструктирование).

Выделяют три основных вида основной работы:

-Учебные задания, опосредующие учебную информацию. В учебном задании соответствующая информация дана непосредственно или же задание указывает на источник, откуда можно получить необходимую информацию. Этот вид задания заменяет устное изложение учителя и предназначен в основном для первоначального восприятия учебного материла.

- Учебные задания, направляющие работу ученика с учебным материалом. Эти задания ориентируют ученика на осмысление и систематизацию учебного материала, а также на самоконтроль; наводят на сравнение, выводы, обобщения.

- Учебные задания, требующие от ученика творческой деятельности. Эти задания направляют ученика к решению проблем, к самостоятельному сбору материала, к составлению заданий.

11


Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/387382-metodicheskie-prijomy-dejatelnosti-tvorchesko

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки