Повышение квалификации
- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
Почему стоит размещать разработки у нас?
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
в СМИ
Диплом за инновационную
профессиональную
деятельность
профессиональную
деятельность
18.02.2020
Построение сечений многогранников методом внутреннего соответствия
МЕТОД МОНЖА (гр. methodos — теория, учение) — научно обоснованная система построения изображений предмета, разработанная французским ученым Гаспаром Монжем (1746—1818). Основой метода является проецирование предмета на взаимно перпендикулярные плоскости проекций. Система полученных проекций полностью отображает его форму. Г, Монж положил начало развитию науки «Начертательная геометрия» .
Изложенный Монжем метод ортогонального проецирования на две взаимно перпендикулярные плоскости проекций был и остается основным методом составления технических чертежей.
В соответствии с методом предложенным Г. Монжем рассмотрим в пространстве две взаимно перпендикулярные плоскости проекций. Одну из плоскостей проекций П1 располагают горизонтально, а вторую П2 - вертикально. П1 - горизонтальная плоскость проекций, П2- фронтальная. Плоскости бесконечны и непрозрачны. Плоскости проекций делят пространство на четыре двугранных угла – четверти. Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций. Линия пересечения плоскостей проекций называется осью координат и обозначается x12.Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те геометрические объекты, которые располагаются в пределах той же первой четверти. Чтобы получить плоский чертеж, состоящий из указанных проекций, плоскость П1 совмещают вращением вокруг оси x12 с плоскостью П2. Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещенные определенным образом одна с другой, называется эпюром Монжа (франц. Epure – чертеж. ) или комплексным чертежом.
Изложенный Монжем метод ортогонального проецирования на две взаимно перпендикулярные плоскости проекций был и остается основным методом составления технических чертежей.
В соответствии с методом предложенным Г. Монжем рассмотрим в пространстве две взаимно перпендикулярные плоскости проекций. Одну из плоскостей проекций П1 располагают горизонтально, а вторую П2 - вертикально. П1 - горизонтальная плоскость проекций, П2- фронтальная. Плоскости бесконечны и непрозрачны. Плоскости проекций делят пространство на четыре двугранных угла – четверти. Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций. Линия пересечения плоскостей проекций называется осью координат и обозначается x12.Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те геометрические объекты, которые располагаются в пределах той же первой четверти. Чтобы получить плоский чертеж, состоящий из указанных проекций, плоскость П1 совмещают вращением вокруг оси x12 с плоскостью П2. Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещенные определенным образом одна с другой, называется эпюром Монжа (франц. Epure – чертеж. ) или комплексным чертежом.
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
Рекомендуем Вам курсы повышения квалификации и переподготовки
Курсы повышения квалификации
- «Особенности работы по адаптации пятиклассников к обучению в основной школе»
- «Методы разрешения конфликтов в образовательном пространстве»
- «Сетевое взаимодействие и сетевая форма реализации образовательных программ в соответствии с ФГОС»
- «Современные педагогические технологии и методика организации инклюзивного процесса для учащихся с ОВЗ»
- «Информационно-коммуникационные технологии в образовательном процессе в соответствии с ФГОС»
- «Естественно-научная грамотность: особенности работы по развитию функциональной грамотности у обучающихся»
Курсы переподготовки
- Педагогика и методика преподавания основ духовно-нравственной культуры народов России в образовательной организации
- Управленческая деятельность в системе социального обслуживания
- Химия: теория и методика преподавания в образовательной организации
- Организационно-методическое сопровождение педагогов. Наставническая деятельность в образовательной организации
- Психологическое консультирование и оказание психологической помощи
- Управленческая деятельность в организации дополнительного образования детей

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.