Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
25.03.2014

Подоготовка к ЕГЭ Как решать В8 Соотношение сторон и углов прямоугольного треугольника

Подробный разбор задания В8 ЕГЭ по математике: прямоугольный треугольник. В материале представлена вся необходимая теория — формулы, свойства и соотношения сторон и углов. Содержит пошаговые алгоритмы решения типовых задач из экзамена, разбор распространенных ошибок и полезные справочные данные. Поможет систематизировать знания и отработать навыки для уверенного решения заданий на нахождение катетов, гипотенузы, синуса, косинуса, тангенса и теорему Пифагора. Идеально для подготовки к ЕГЭ и повышения балла.

Содержимое разработки

Геометрическое задание   ЕГЭ по математике базового уровня. Начнем с прямоугольного треугольника, ведь основная масса заданий связанна именно с ним. А значит надо знать теорему Пифагора, тригонометрические функции, тригонометрические тождества. Уметь составлять пропорцию.

По теореме Пифагора всегда можно найти третью сторону в прямоугольном треугольнике, зная две других. Сторона которая лежит напротив прямого угла называется гипотенузой, две другие - это катеты.

Например:

Решение: Диагональ АС является гипотенузой прямоугольного треугольника АВС или АСD (по сути все-равно, они ведь одинаковые).

Пусть, это будет треугольник АВС. Сторона АВ=3, ВС=4.

По теореме Пифагора найдем гипотенузу АС:

Достаточно много задач в ЕГЭ по математике 2012 задания В3, где в прямоугольном треугольнике необходимо найти sin, cos или tg угла.

Итак, по порядку:

Обратите внимание на то, что для угла В прилежащий катет - это наоборот сторона ВС, а противолежащий катет - АС. Гипотенуза для любого угла  - это сторона АВ.

Например:

Решение: Данную задачу можно решать несколькими способами, но мы разберем способ с использованием теоремы Пифагора.

Итак, в задаче дан cosА, а это значит, что отношение прилежащего катета к гипотенузе равно корень из 55 делить на 8, следовательно прилежащий катет мы приравняем к корню из 55, умноженному на Х, а к гипотенузе - 8, умноженную на Х. т.е.:

Следовательно, Ав=8х=8*1=8, ответ: 8

Разбирая задание В6 перейдем к задачам, где один треугольник содержит в себе прямоугольный треугольник: суть решения такая же, как описана выше.

Решение: Треугольник АВС - прямоугольный, в нем проведена высота СН, а значит внутри треугольника АВС образуется еще один прямоугольный треугольник АСН. Вот его то мы и будем рассматривать. Т.к. сosА это отношение прилежащего катета к гипотенузе, где прилежащим катетом к углу А является сторона АН , а гипотенузой АС, то АН=4х, а АС=5х. В то же время по условию задачи АС=4:

Следовательно 5х=4, а х=4/5 или х=0,8. Значит сторона АН=4*0,8=3,2.

В этой задаче внутри одного прямоугольного треугольника находился другой прямоугольный треугольник.

А теперь разберем задание, где прямоугольный треугольник образуется в равнобедренном:

Решение: Треугольник АВС - равнобедренный, т.к. АС=ВС, а значит равны и углы при основании АВ, т.е. угол А равен углу В. Следовательно сosA=cosB. Рассмотрим прямоугольный треугольник АВН. Косинус - это прилежащий катет к гипотенузе. а значит cosB=9/10=0,9, а значит и сosA=0,9:

Для решения следующей задачи необходимо знать формулы приведения. На самом деле этих формул 32 штуки.

В данном задании может понадобиться всего две:

Разберем еще одну задачу:

Решение: Для начала нарисуем этот тупоугольный треугольник:

А теперь проведем высоту СН. Т.к. высота должна падать под углом в 90 градусов, то СН под этим углом к прямой АВ придется откладывать не на самую прямую АВ, а на ее продолжение:

Итак, образовался прямоугольный треугольник ВСН. По условию задачи необходимо рассчитать sin В. По формулам приведения он равен sin СВН. Поэтому будем искать сначала sin CВН. Синус - это отношение противолежащего катета НС к гипотенузе ВС. НС нам не известно, а ВС=5. По теореме Пифагора найдем НС :

ВН2+НС2=ВС2

НС2=ВС2-ВН2

НС2=52-42=9

НС=3

Следовательно:

Sin НВС=3/5=0,6.

Продолжая тему подготовки к ЕГЭ, поговорим о четырехугольниках: трапециях и параллелограммах.

Разберем на примере:

Решение: Средняя линия трапеции равна половине суммы оснований. Т.е. надо знать чему равны основания АВ и CD. Диагонали пересекаются под углами в 90 градусов, следовательно образуются 4 прямоугольных равнобедренных треугольника: DFO, FCO, AOE, EOB:

Разберем еще одну задачу:

Решение: Больший угол - это угол D или В. Т.к. углы относятся как

7 к 17, то пусть угол А= 7х, а угол D=17x. Сумма этих углов 180 градусов, следовательно 7х+17х=180, 24х=180, х=7,5, а угол D=7,5*17=127,5

В базе ЕГЭ по математике 2012  встречаются и задачи на тему вписанных и описанных окружностей, поэтому стоит обратить на это особое внимание.

Вписанные окружность - это окружность, которая вписаны внутри многоугольника и важно, чтобы каждая вершина многоугольника касалась окружности.

Описанная окружность - это окружность, которая описана около многоугольника и важно, чтобы каждая вершина многоугольника касалась окружности.

Сначала немного об окружностях:

Например, внутренний угол АСВ в два раза меньше центрального угла АОВ, оба угла опираются на дугу АВ.

Разберем на примере:

Решение: На дугу АВ опираются два угла: внутренний АСВ и центральный АОВ, значит центральный угол в два раза больше вписанного, а значит равен 16*2=32 градуса. Т.к. DВ - диаметр, то углы DOA и АОВ - смежные, а значит в сумме равны 180 градусов, если угол АОВ=32, то угол DOB=180-32=148 градусов.

Разберем еще один пример:

Решение: Проведем радиусы ВО и АО, полученный треугольник АВО - равнобедренный:

В одном из вариантов диагностической работы за 3 марта 2011 года была предложена такая задача В6, которая вызвала у многих сложность, поэтому хочу сегодня разобрать решения подобных ей задач.

Решение: В данной задаче даны медиана и высота. Задача не такая уж и сложная, но при условии, если вы помните, что медиана, выходящая из прямого угла равна половине гипотенузы. В нашем случае, это значит, что АМ=МВ=СМ. Следовательно треугольники АМС и МСВ - равнобедренные, а значит углы при основании этих треугольников тоже равны. Я обозначила их за х и y:

Рассмотри прямой угол С (х+y=90). Угол ВСH=90-y, в то же время угол BCH=y-16 (т.к. СH - высота). Приравняем: 90-y=y-16. Следовательно, 2y=106, y=54. Значит х=90-54=36. Больший из острых углов равен 54.

Рассмотрим еще одну задачу:

Решение: В данной задаче даны медиана и биссектрисаМедиана из прямого угла в этой задаче тоже равна половине гипотенузы. Значит, что АМ=МВ=СМ. Следовательно треугольники АМС и МСВ - равнобедренные, а значит углы при основании этих треугольников тоже равны:

Т.к. CD - биссектриса, то углы ВСD и АСD равны. Это значит 39+х=51, значит х=51-39, х=12.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/39873-podogotovka-k-egje-kak-reshat-v8-sootnoshenie

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки