- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- «Специфика работы с детьми-мигрантами дошкольного возраста»
- «Нормативно-правовое обеспечение работы социального педагога образовательного учреждения»
- «Организационные аспекты работы педагога-психолога ДОУ»
- «Ранний детский аутизм»
- «Специальная психология»
- «Психолого-педагогическое сопровождение процесса адаптации детей-мигрантов в образовательной организации»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Дидактические материалы "Теория вероятности"
В10
В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 — из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Швеции.
На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая.
На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России.
На соревнования по прыжкам в воду приехали 6 спортсменов из Италии, 3 из Германии и 3 из России. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что третьим будет выступать спортсмен из Германии.
Научная конференция проводится в 5 дней. Всего запланировано 75 докладов — первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?
Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?
Конкурс исполнителей проводится в 3 дня. Всего заявлено 40 выступлений — по одному от каждой страны. В первый день 30 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?
Конкурс исполнителей проводится в 3 дня. Всего заявлено 60 выступлений — по одному от каждой страны. В первый день18 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?
Конкурс исполнителей проводится в 3 дня. Всего заявлено 80 выступлений — по одному от каждой страны. В первый день 20 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?
В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.
В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.
Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.
Вася, Петя, Коля и Лёша бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.
На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?
Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая –– 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая –– 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых.
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Меркурий» по очереди играет с командами «Марс», «Юпитер» и «Уран». Найдите вероятность того, что во всех матчах право владеть мячом выиграет команда «Меркурий».
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Витязь» по очереди играет с командами «Атлант» и «Титан». Найдите вероятность того, что команда «Витязь» не выиграет право первой владеть мячом ни в одно матче.
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Хуторянка» по очереди играет с командами «Радуга», «Дружба», «Заря» и «Воля». Найдите вероятность того, что команда «Хуторянка» будет первой владеть мячом только в первых двух играх.
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд выиграет право подачи первой. Команда «Байкал» по очереди играет с командами «Амур», «Енисей» и «Иртыш». Найдите вероятность того, что команда «Байкал» будет первой владеть мячом только в игре с «Амуром».
Перед началом волейбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Изумруд» по очереди играет с командами «Сапфир», «Аметист», «Алмаз» и «Хризолит». Найдите вероятность того, что во всех четырех матчах первым подавать мяч будет команда «Изумруд».
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что оба раза выпадет орел.
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что оба раза выпадет решка.
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что один раз выпадет орел, а другой – решка.
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что решка выпадет ровно один раз.
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет четное число раз.
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 3 очка. Результат округлите до сотых.
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 6 очков. Результат округлите до сотых.
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 9 очков. Результат округлите до сотых.
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 10 очков. Результат округлите до сотых.
Люда дважды бросает игральный кубик В сумме у нее выпало 9 очков. Найдите вероятность того, что при первом броске выпало 5 очков.
Лена дважды бросает игральный кубик В сумме у нее выпало 11 очков. Найдите вероятность того, что при первом броске выпало 6 очков.
Юля дважды бросает игральный кубик В сумме у нее выпало 5 очков. Найдите вероятность того, что при первом броске выпало 3 очка.
Аня дважды бросает игральный кубик В сумме у нее выпало 3 очка. Найдите вероятность того, что при первом броске выпало 1 очко.
Маша дважды бросает игральный кубик В сумме у нее выпало 8 очков. Найдите вероятность того, что при первом броске выпало 5 очков.
Лена и Саша играют в кости. Они бросают кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 8 очков. Найдите вероятность того, что Лена выиграла.
Наташа и Вика играют в кости. Они бросают кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 9 очков. Найдите вероятность того, что Наташа проиграла.
Женя и Юля играют в кости. Они бросают кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 11 очков. Найдите вероятность того, что Женя проиграла.
Таня и Нина играют в кости. Они бросают кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 6 очков. Найдите вероятность того, что Таня выиграла.
Наташа и Вика играют в кости. Они бросают кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 9 очков. Найдите вероятность того, что Наташа выиграла.
Два стрелка независимо друг от друга по одному разу стреляют в мишень. Вероятность попадания каждого стрелка в отдельности равна 0,9 и 0,3 соответственно. Найдите вероятность того, что мишень будет поражена дважды.
Два стрелка независимо друг от друга по одному разу стреляют в мишень. Вероятность попадания каждого стрелка в отдельности равна 0,9 и 0,3 соответственно. Найдите вероятность того, что мишень не будет поражена ни разу.
Два стрелка независимо друг от друга по одному разу стреляют в мишень. Вероятность попадания каждого стрелка в отдельности равна 0,9 и 0,3 соответственно. Найдите вероятность того, что мишень будет поражена хотя бы один раз.
Два стрелка независимо друг от друга по одному разу стреляют в мишень. Вероятность попадания каждого стрелка в отдельности равна 0,9 и 0,3 соответственно. Найдите вероятность того, что мишень будет поражена ровно один раз.
Два стрелка независимо друг от друга по одному разу стреляют в мишень. Вероятность попадания каждого стрелка в отдельности равна 0,8 и 0,2 соответственно. Найдите вероятность того, что мишень будет поражена дважды.
Два стрелка независимо друг от друга по одному разу стреляют в мишень. Вероятность попадания каждого стрелка в отдельности равна 0,8 и 0,2 соответственно. Найдите вероятность того, что мишень не будет поражена ни разу.
Два стрелка независимо друг от друга по одному разу стреляют в мишень. Вероятность попадания каждого стрелка в отдельности равна 0,8 и 0,2 соответственно. Найдите вероятность того, что мишень будет поражена хотя бы один раз.
Два стрелка независимо друг от друга по одному разу стреляют в мишень. Вероятность попадания каждого стрелка в отдельности равна 0,8 и 0,2 соответственно. Найдите вероятность того, что мишень будет поражена ровно один раз.
Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8ºС, равна 0,7. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8ºС или выше.
Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8ºС, равна 0,92. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8ºС или выше.
Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8ºС, равна 0,71. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8ºС или выше.
Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8ºС, равна 0,93. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8ºС или выше.
Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.
Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,93. Вероятность того, что окажется меньше 12 пассажиров, равна 0,49. Найдите вероятность того, что число пассажиров будет от 12 до 20.
Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач
Вероятность того, что на тесте по биологии учащийся О. верно решит больше 15 задач, равна 0,62. Вероятность того, что О. верно решит больше 14 задач, равна 0,7. Найдите вероятность того, что О. верно решит ровно 15 задач.
Вероятность того, что новый электрический чайник прослужит больше года, равна 0,95. Вероятность того, что он прослужит больше двух лет, равна 0,83. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Вероятность того, что новый тостер прослужит больше года, равна 0,94. Вероятность того, что он прослужит больше двух лет, равна 0,8. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Вероятность того, что батарейка бракованная, равна 0,04. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Вероятность того, что батарейка бракованная, равна 0,03. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,56. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,25. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,1. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,35. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,2. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,2. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,3. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,1. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,35. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,35. Вероятность того, что кофе закончится в обоих автоматах, равна 0,2. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,2. Вероятность того, что кофе закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
В аэропорте два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,25. Вероятность того, что кофе закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
Биатлонист 3 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последний раз промахнулся. Результат округлите до сотых.
Биатлонист 3 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,5. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последний промахнулся. Результат округлите до сотых.
Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,7. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
Биатлонист 3 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последний раз промахнулся. Результат округлите до сотых.
В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,12 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,02 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,1 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,07 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,7. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).
В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,6. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).
В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,5. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).
По отзывам покупателей Василий Васильевич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,93. Вероятность того, что этот товар доставят из магазина Б, равна 0,94. Василий Васильевич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.
По отзывам покупателей Пётр Петрович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,87. Вероятность того, что этот товар доставят из магазина Б, равна 0,92. Пётр Петрович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.
По отзывам покупателей Василий Васильевич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,88. Василий Васильевич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.
По отзывам покупателей Василий Васильевич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,83. Василий Васильевич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.
По отзывам покупателей Василий Васильевич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,94. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Василий Васильевич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.
Помещение освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,21. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,07. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,19. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,22. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Ковбой Джон попадает в муху на стене с вероятностью 0,8, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 2 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,3. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Ковбой Джон попадает в муху на стене с вероятностью 0,7, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,1. На столе лежит 10 револьверов, из них только 2 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,1. На столе лежит 10 револьверов, из них только 3 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Ковбой Джон попадает в муху на стене с вероятностью 0,8, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,4. На столе лежит 10 револьверов, из них только 3 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 8 очков в двух играх. Если команда выигрывает, она получает 5 очков, в случае ничьей — 3 очка, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,2.
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 6 очков в двух играх. Если команда выигрывает, она получает 4 очка, в случае ничьей — 2 очка, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,2.
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 6 очков в двух играх. Если команда выигрывает, она получает 5 очков, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,3.
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 9 очков в двух играх. Если команда выигрывает, она получает 5 очков, в случае ничьей — 4 очка, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.
Чтобы поступить в институт на специальность «Переводчик», абитуриент должен набрать на ЕГЭ не менее 79 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Таможенное дело», нужно набрать не менее 79 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент Б. получит не менее 79 баллов по математике, равна 0,9, по русскому языку — 0,7, по иностранному языку — 0,8 и по обществознанию — 0,9.
Найдите вероятность того, что Б. сможет поступить на одну из двух упомянутых специальностей.
Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 68 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Менеджмент», нужно набрать не менее 68 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент Р. получит не менее 68 баллов по математике, равна 0,7, по русскому языку — 0,7, по иностранному языку — 0,8 и по обществознанию — 0,5.
Найдите вероятность того, что Р. сможет поступить на одну из двух упомянутых специальностей.
Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 64 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Социология», нужно набрать не менее 64 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент Б. получит не менее 64 баллов по математике, равна 0,5, по русскому языку — 0,9, по иностранному языку — 0,8 и по обществознанию — 0,9.
Найдите вероятность того, что Б. сможет поступить на одну из двух упомянутых специальностей.
Чтобы поступить в институт на специальность «Международные отношения», абитуриент должен набрать на ЕГЭ не менее 67 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Менеджмент», нужно набрать не менее 67 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент Т. получит не менее 67 баллов по математике, равна 0,6, по русскому языку — 0,5, по иностранному языку — 0,8 и по обществознанию — 0,9.
Найдите вероятность того, что Т. сможет поступить на одну из двух упомянутых специальностей.
Чтобы поступить в институт на специальность «Международные отношения», абитуриент должен набрать на ЕГЭ не менее 79 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 79 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент И. получит не менее 79 баллов по математике, равна 0,8, по русскому языку — 0,7, по иностранному языку — 0,9 и по обществознанию — 0,5.
Найдите вероятность того, что И. сможет поступить на одну из двух упомянутых специальностей..
Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?
Из множества натуральных чисел от 58 до 82 наудачу выбирают одно число. Какова вероятность того, что оно делится на 6?
Из множества натуральных чисел от 40 до 54 наудачу выбирают одно число. Какова вероятность того, что оно делится на 5?
Из множества натуральных чисел от 41 до 56 наудачу выбирают одно число. Какова вероятность того, что оно делится на 2?
Из множества натуральных чисел от 51 до 78 наудачу выбирают одно число. Какова вероятность того, что оно делится на 2?
Из множества натуральных чисел от 36 до 55 наудачу выбирают одно число. Какова вероятность того, что оно делится на 5?
Из множества натуральных чисел от 25 до 40 наудачу выбирают одно число. Какова вероятность того, что оно делится на 4?
Из множества натуральных чисел от 30 до 51 наудачу выбирают одно число. Какова вероятность того, что оно делится на 2?
На олимпиаде в вузе участников рассаживают по трём аудиториям. В первых двух по 120 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 250 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
На олимпиаде по истории 400 участников разместили в трёх аудиториях. В первых двух удалось разместить по 140 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
На олимпиаде по социологии 400 участников разместили в трёх аудиториях. В первых двух удалось разместить по 110 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
На олимпиаде по биологии 400 участников разместили в трёх аудиториях. В первых двух удалось разместить по 150 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
На олимпиаде по математике 400 участников разместили в трёх аудиториях. В первых двух удалось разместить по 120 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
В классе 26 человек, среди них два близнеца — Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.
В классе 33 учащихся, среди них два друга — Андрей и Михаил. Учащихся случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Андрей и Михаил окажутся в одной группе.
В классе 21 учащийся, среди них два друга — Вадим и Олег. Учащихся случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Вадим и Олег окажутся в одной группе.
В классе 9 учащихся, среди них два друга — Михаил и Андрей. Учащихся случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Михаил и Андрей окажутся в одной группе.
В классе 6 учащихся, среди них два друга — Сергей и Андрей. Учащихся случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Сергей и Андрей окажутся в одной группе.
В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.
В группе туристов 20 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 5 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист Ф. полетит вторым рейсом вертолёта.
В группе туристов 24 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 3 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист З. полетит первым рейсом вертолёта.
В группе туристов 16 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист Ф. полетит первым рейсом вертолёта.
В группе туристов 16 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист Н. полетит первым рейсом вертолёта.
В некотором городе из 3000 появившихся на свет младенцев 1560 мальчиков. Найдите частоту рождения девочек в этом городе.
В некотором городе из 5000 появившихся на свет младенцев 2440 девочек. Найдите частоту рождения мальчиков в этом городе. Результат округлите до тысячных.
В некотором городе из 3000 появившихся на свет младенцев 1520 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.
В некотором городе из 3000 появившихся на свет младенцев 1430 девочек. Найдите частоту рождения мальчиков в этом городе. Результат округлите до тысячных.
В некотором городе из 4000 появившихся на свет младенцев 2020 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.
Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 25% этих стекол, вторая — 75%. Первая фабрика выпускает 4% бракованных стекол, а вторая — 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 70% этих стекол, вторая — 30%. Первая фабрика выпускает 1% бракованных стекол, а вторая — 3%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 30% этих стекол, вторая — 70%. Первая фабрика выпускает 4% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 70% этих стекол, вторая — 30%. Первая фабрика выпускает 5% бракованных стекол, а вторая — 4%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 1% бракованных стекол, а вторая — 3%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 60% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 70% яиц высшей категории. Всего высшую категорию получает 65% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 90% яиц высшей категории. Всего высшую категорию получает 60% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 55% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 35% яиц высшей категории. Всего высшую категорию получает 45% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 50% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 70% яиц высшей категории. Всего высшую категорию получает 65% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/465417-didakticheskie-materialy-teorija-verojatnosti


БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Преподавание русского языка и литературы по ФГОС ООО и ФГОС СОО: содержание, методы и технологии»
- «Особенности организации групповой и тренинговой работы с детьми и подростками в практике психолога»
- «Адаптация первоклассников к обучению в школе»
- «Познавательное развитие детей дошкольного возраста в условиях реализации ФГОС ДО»
- «ОГЭ по географии: содержание экзамена и технологии подготовки обучающихся в соответствии с ФГОС»
- «Организация работы с обучающимися с ОВЗ в практике учителя математики»
- Педагогическое образование: Теория и методика начального образования
- Основы управления дошкольной образовательной организацией
- Педагогика и методика преподавания географии
- Управление в социальной сфере: обеспечение эффективной деятельности организации социального обслуживания
- Теория и методика преподавания математики в образовательных организациях
- Химия: теория и методика преподавания в образовательной организации
Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.