Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
06.11.2021

Олимпиадные задания по математике, 8 класс

В данной работе представлены задания и ответы на данные задания школьного тура олимпиады обучающихся по математике для 8 класса. УМК любой. Задания математических олимпиад являются творческими, допускают несколько различных вариантов решений

Содержимое разработки

Пояснительная записка

1.

Автор (ФИО, должность)

Демичева Ирина Владимировна, учитель математики

2.

Название ресурса

Олимпиада по математике (школьный этап)

2021-2022 учебный год 8 класс

3.

Вид ресурса

Конспект

4.

Предмет, УМК

Ю.Н.Макарычев, Л.С. Атанасян

5.

Цель и задачи ресурса

 Предлагаемые задания школьного этапа предметной олимпиады по математике в 8 классе нацелены на проверку знаний и умений учащихся.

6.

Возраст учащихся, для которых предназначен ресурс

8 класс

7.

Программа, в которой создан ресурс

MicrosoftWord

8.

Методические рекомендации по использованию ресурса

Олимпиадные задания по математике помогут учителю подготовить учащихся к различного рода олимпиад.

9.

Источники информации

  1. https://infourok.ru/olimptada-po-matematike-klass-483716.html

  2. https://botana.biz/prepod/matematika/oyoksp58.html

  3. https://easyen.ru

Олимпиадные задания, 8 класс

Каждой букве соответствует только одна цифра. Разным буквам не могут соответствовать одинаковые цифры.

А

Б

В

Г

Д

х

4

Д

Г

В

Б

А

2. Известно, что монеты в 1, 2, 3 и 5 копеек весят, соответственно 1, 2, 3, и 5 граммов. Среди четырёх монет (по одной каждого достоинства) одна фальшивая - отличается весом от настоящей. Как с помощью взвешиваний на чашечных весах без гирь определить фальшивую монету?

3. Диагональ параллелограмма делит его угол в отношении 1:3.

Найдите углы параллелограмма, если длины сторон относятся как 1:2.

4. Лиса преследовала кролика по прямолинейной дорожке, ведущей к норе кролика. Их скорости были постоянные. В некоторый момент расстояния от кролика до норы было ровно 7м, а до лисы 13м. В некоторый следующий момент расстояние между кроликом и норой стало вдвое меньше расстояния между ним и лисой. Успела ли лиса догнать кролика, прежде чем тот юркнул в норку?

5. Трехзначное число abc делится на 37.

Докажите, что сумма чисел bca и cab также делится на 37.

8 класс решения

1. А≤2 (иначе был бы перенос в следующий разряд); А - четное (как результат умножения на 4), следовательно, A=2, следовательно, Д=8, следовательно, Б≤2 (иначе перенос в старший разряд и Д не будет равно 8). Б - нечетное (так как от произведения 4∙8 переносится 3), следовательно, Б=1. Отсюда Г либо 7 либо 2 (последняя цифра 4∙Г+3 равна 1). Г=2 быть не может, т.к. А=2, следовательно, Г=7. Аналогично находим, что В=9.

Ответ. АБВГД = 21978.

2 .Чтобы узнать, какая монета фальшивая выполним следующие взвешивания: 1) 1 коп. +2 коп. и 3 коп.; 2) 2 коп. + 3 коп. и 5 коп. Если при первом взвешивании будет равновесие, то бракованная монета – 1 коп. Если же равновесия не будет, то обе монеты, 1 коп. и 5 коп., - настоящие, а одна из монет, 2 коп. или 3 коп., бракованная. Кроме того из второго взвешивания можно будет сделать вывод легче или тяжелее настоящей фальшивая монета. Если при первом взвешивании перевесит та же чашка весов, что и при втором, то фальшивая монета – 2 коп., иначе 3 коп.

3. Пусть АВ=х, ВС=2х, СВD=α, АВD=3α.

Построем луч ВЕ так, чтобы ЕВD=α, тогда

АВЕ=2α= АЕВ;

ВЕ=АЕ=ЕВ=х, значит А=60°, АВС=120°.

Ответ: 60° и 120°.

4. Нет. Если бы после первого момента лиса бежала с такой скоростью V, что она одновременно с кроликом добежала бы до норы, то во втором из указанных моментов (так же как и в первом) расстояние между кроликом и норой было бы в 7/13 раз меньше расстояния между ним и лисой. Поскольку в нашем случае отношение этих расстояний равно 1/2< 7/13, лиса, в действительности, бежала бы скоростью меньшей, чем V, а значит, не успела догнать кролика.

5. Число 111 делится на 37, поэтому на 37 делится число abc+bca+cab=111(a+b+c). По условию число abc делится на 37, поэтому и сумма bca+cab=111(a+b+c)-abc делится на 37.

Критерии оценивания

Задания математических олимпиад являются творческими, допускают несколько различных вариантов решений. Кроме того, необходимо оценивать частичные продвижения в задачах (например, разбор одного из случаев методом, позволяющим решить задачу в целом, доказательство леммы, используемой в одном из доказательств, нахождение примера или доказательства оценки в задачах типа «оценка + пример» и т.п.). Наконец, возможны как существенные, так и не влияющие на логику рассуждений логические и арифметические ошибки в решениях. Окончательные баллы по задаче должны учитывать все вышеперечисленное.

В соответствии с регламентом проведения математических олимпиад школьников каждая задача оценивается из 5 баллов.

Соответствие правильности решения и выставляемых баллов приведено в таблице.

Баллы

Правильность (ошибочность) решения

5

Полное верное решение.

4

Верное решение. Имеются небольшие недочеты, в целом не влияющие на решение.

Решение в целом верное. Однако оно содержит ряд ошибок, либо не рассмотрение отдельных случаев, но может стать правильным после небольших исправлений или дополнений.

3

Верно рассмотрен один из двух (более сложный) существенных случаев, или в задаче типа «оценка + пример» верно получена оценка.

2

Доказаны вспомогательные утверждения, помогающие в решении задачи.

1

Рассмотрены отдельные важные случаи при отсутствии решения (или при ошибочном решении).

0

Решение неверное, продвижения отсутствуют.

0

Решение отсутствует.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/468801-olimpiadnye-zadanija-po-matematike-8-klass

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки