Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
02.08.2023

Методика преподавания иррациональных уравнений в школьном курсе математики

Гилаш Татьяна Андреевна
учитель математики
Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. В школе иррациональным уравнениям уделяется достаточно мало внимания. Однако задачи по теме «Иррациональные уравнения» встречаются на выпускных и вступительных экзаменах. Так как при решении иррациональных уравнений в школе применяются тождественные преобразования, то чаще всего возникают ошибки, которые обычно связаны с потерей или приобретением посторонних корней в процессе решения.
Применение разработанной методики решения иррациональных уравнений позволит решать иррациональные уравнения и неравенства на сознательной основе, выбирать наиболее рациональный метод, применять разные методы решения, в том числе те, которые не рассмотрены в школьных учебниках.
Учебник «Алгебра и начала анализа, 10-11», авт. А.Г. Мордкович, состоит из двух частей: учебника и задачника.
В первой части данного учебного пособия материал, касающийся иррациональных уравнений и неравенств, изучается в последней VIII главе «Уравнения и неравенства. Системы уравнений и неравенств», завершающей изучение школьного курса алгебры и начал математического анализа. Здесь уравнения и неравенства рассматриваются с самых общих позиций. Это, с одной стороны, своеобразное подведение итогов и, с другой стороны, некоторое расширение и углубление знаний.

Содержимое разработки

«Методика преподавания иррациональных уравнений

в школьном курсе математики»

учитель математики ГОУ «РУТЛ-К»

Гилаш Татьяна Андреевна

Возникновение интереса к математике у значительного числа учащихся зависит в большей степени от методики ее преподавания, от того, насколько умело будет построена учебная работа. Надо позаботиться о том, чтобы на уроках каждый ученик работал активно и увлеченно, и использовать это как отправную точку для возникновения и развития любознательности, глубокого познавательного интереса. Это особенно важно в подростковом возрасте, когда еще формируются, а иногда и только определяются постоянные интересы и склонности к тому или иному предмету. Именно в этот период нужно стремиться раскрыть притягательные стороны математики. Предмет математики в курсе средней школы является довольно сложным, и, разумеется, задача каждого учителя состоит в наиболее полном освоении его учениками основ этого предмета.

Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. В школе иррациональным уравнениям уделяется достаточно мало внимания. Однако задачи по теме "Иррациональные уравнения" встречаются на выпускных и вступительных экзаменах. Так как при решении иррациональных уравнений в школе применяются тождественные преобразования, то чаще всего возникают ошибки, которые обычно связаны с потерей или приобретением посторонних корней в процессе решения.

Применение разработанной методики решения иррациональных уравнений позволит решать иррациональные уравнения и неравенства на сознательной основе, выбирать наиболее рациональный метод, применять разные методы решения, в том числе те, которые не рассмотрены в школьных учебниках.

Учебник "Алгебра и начала анализа, 10-11", авт. А.Г. Мордкович, состоит из двух частей: учебника и задачника.

В первой части данного учебного пособия материал, касающийся иррациональных уравнений и неравенств, изучается в последней VIII главе "Уравнения и неравенства. Системы уравнений и неравенств", завершающей изучение школьного курса алгебры и начал математического анализа. Здесь уравнения и неравенства рассматриваются с самых общих позиций. Это, с одной стороны, своеобразное подведение итогов и, с другой стороны, некоторое расширение и углубление знаний.

В первых трех параграфах этой главы подведены итоги изучения в школе уравнений, неравенств. Использованы следующие термины:

  • равносильность уравнений;

  • следствие уравнения;

  • равносильное преобразование уравнения;

  • посторонние корни;

  • проверка корней.

Сформулированы теоремы равносильности уравнений.

Перечислены возможные причины расширения области определенияуравнения, одна из которых - освобождение в процессе решения уравнения от знаков корней четной степени; указаны причины, по которым может произойти потеря корней при решении уравнений.

Выделены четыре общих метода решения уравнений:

  • замена уравнения h (f (x)) =h (g (x)) уравнениемf (x) =g (x);

  • метод разложения на множители;

  • метод введения новых переменных;

  • функционально-графический метод.

На примере иррационального уравнения показано как в три этапа осуществляется решение любого уравнения:

Первый этаптехнический.

Второй этапанализ решения.

Третий этаппроверка.

Также на примере иррационального уравнения показано, как сделать проверку, если проверка корней с помощью их подстановки в исходное уравнение сопряжена со значительными вычислительными трудностями.

Метод замены уравнения h (f (x)) =h (g (x)) уравнениемf (x) =g (x) применятся при решении иррациональных уравнений для перехода от уравнения к уравнению .

Метод введения новой переменной также разобран и на примере решения иррационального уравнения.

Много заданий, в которых требуется решить "смешанное" уравнение, то есть логарифмическое, показательное или тригонометрическое уравнение, в которое входят и иррациональные выражения. Среди этих заданий есть задания как базового, так и повышенного уровня.

Иррациональным уравнением называется уравнение, содержащее неизвестное под знаком корня.

Прежде чем приступить к решению сложных уравнений учащиеся должны научиться решать простейшие иррациональные уравнения. К простейшим иррациональным уравнениям относятся уравнения вида:

Основная идея решения иррационального уравнения состоит в сведении его к рациональному алгебраическому уравнению, которое либо равносильно исходному иррациональному уравнению, либо является его следствием.

Главный способ избавиться от корня и получить рациональное уравнение - возведение обеих частей уравнения в одну и ту же степень, которую имеет корень, содержащий неизвестное, и последующее "освобождение" от радикалов по формуле .

Если обе части иррационального уравнения возвести в одну и ту же нечетную степень и освободиться от радикалов, то получится уравнение, равносильное исходному.

При возведении уравнения в четную степень получается уравнение, являющееся следствием исходного. Поэтому возможно появление посторонних решений уравнения, но невозможна потеря корней. Причина приобретения корней состоит в том, что при возведении в четную степень чисел, равных по абсолютной величине, но разных по знаку, получается один и тот же результат. Так как могут появиться посторонние корни, то необходимо делать проверку.

Рассмотрим применение данного метода решения иррациональных уравнений.

Пример 1. Решите уравнение .

Решение. Возведем обе части этого уравнения в квадрат и получим , откуда следует, что или .

Проверка. : . Это неверное числовое равенство, значит, число не является корнем данного уравнения.

: . Это верное числовое равенство, значит, число является корнем данного уравнения.

Ответ. .

Проверка, осуществляемая подстановкой найденного решения в исходное уравнение, может быть легко реализована, если проверяемые корни - "хорошие" числа, а для "громоздких" корней проверка может быть сопряжена со значительными вычислительными трудностями. Поэтому школьник должен уметь решать иррациональные уравнения с помощью равносильных преобразований. Возведение в четную степень уравнения вида состоит в переходе к равносильной ему системе

Школьники довольно часто добавляют к этой системе неравенство . Однако этого делать нельзя, поскольку условие автоматически выполняется для корней уравнения , в правой части которого стоит неотрицательное выражение.

Пример 2. Решить уравнение .

Решение. Это уравнение равносильно системе

Решая первое уравнение этой системы, равносильное уравнению , получим корни и .

Второй корень не удовлетворяет неравенству системы и, следовательно, является посторонним корнем исходного уравнения.

Ответ. 1.

При решении иррациональных уравнений полезно перед возведением обеих частей уравнения в некоторую степень "уединить радикал", то есть представить уравнение в виде .

Тогда после возведения обеих частей уравнения в n-ую степень радикал справа исчезнет.

Пример 3. Решить уравнение

Решение. Метод уединения радикала приводит к уравнению . Это уравнение равносильно системе

Решая первое уравнение этой системы, получим корни и , но условие выполняется только для .

Ответ. 3.

Полезно запомнить схему решения еще одного вида иррациональных уравнений . Такое уравнение равносильно каждой из двух систем

Поскольку после возведения в четную степень получаем уравнение-следствие . Мы должны, решив его, выяснить, принадлежат ли найденные корни области определения исходного уравнения, то есть выполняется ли неравенство (или ). На практике из этих систем выбирают для решения ту, в которой неравенство проще.

Пример 4. Решить уравнение .

Решение. Это уравнение равносильно системе

Решая первое уравнение этой системы, равносильное уравнению , получим корни и .

Однако при этих значениях xне выполняется неравенство , и потому данное уравнение не имеет корней.

Ответ. Корней нет.

Перейдем к решению иррациональных уравнений, не относящихся к простейшим.

Пример 5. Решить уравнение .

Решение. Возведем обе части уравнения в квадрат и произведем приведение подобных членов, перенос слагаемых из одной части равенства в другую и умножение обеих частей на .

В результате получим уравнение , являющееся следствием исходного.

Снова возведем обе части уравнения в квадрат. Получим уравнение , которое приводится к виду .

Это уравнение (также являющееся следствием исходного) имеет корни , . Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Ответ. 4, 11.

Важно отметить, что каждая разновидность уравнений такого вида требует большое количество сил и времени для полного усвоения и верного решения.

Использованная литература

  1. Галицкий М.Л. Сборник задач по алгебре для 8-9 классов: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики. - М.: Просвещение, 1999. - 271с.

  2. Григорьев А.М. Иррациональные уравнения. // Квант, №1, 1972, с.46-49.

  3. Денищева Л.О. Готовимся к единому государственному экзамену. Математика. - М.: Дрофа, 2004. - 120 с.

  4. Егоров А. Иррациональные неравенства. // Математика. Первое сентября, №15, 2002. - с.13-14.

  5. Мордкович А.Г. Алгебра и начала анализа.10-11 кл.: В двух частях. Ч.1, Ч.2: Учеб. для общеобразоват. учреждений. - М.: Мнемозина, 2004. - 315 с.

  6. Потапов М. Как решать уравнения без ОДЗ. // Математика. Первое сентября, №21, 2003. - с.42-43.

  7. Образовательные ресурсы сети Интернет http://ege.edu.ru

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/544226-metodika-prepodavanija-irracionalnyh-uravneni

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки