- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
План урока по теме «Радианная мера угла»
Тема урока: Радианная мера угла
Перечень вопросов, рассматриваемых в теме:
1) Понятие тригонометрической окружности;
2) Поворот точки вокруг начала координат;
3) Длина дуги окружности и площадь кругового сектора.
Окружность – это замкнутая линия, все точки которой равноудалены от центра.
Радиус окружности – отрезок, соединяющий её центр с любой лежащей на окружности точкой.
Круг – часть плоскости, ограниченная окружностью.
Дуга окружности – кривая линия, лежащая на окружности и ограниченная двумя точками.
Круговой сектор – часть круга, ограниченная двумя радиусами.
Угол в 1 радиан – центральный угол, опирающийся на дугу, равную по длине радиусу окружности.
Теоретический материал для самостоятельного изучения
На уроках геометрии мы с вами изучали окружность, её элементы, свойства. Повторим понятие окружности. Это замкнутая линия, все точки которой равноудалены от центра.
Радиусом окружности называется отрезок, соединяющий её центр с любой лежащей на окружности точкой.
На окружности можно выделить дугу. А если рассмотреть круг - часть плоскости, ограниченной окружностью - то можно выделить круговой сектор.
Рассмотрим окружность радиуса, равному 1 единичному отрезку, в прямоугольной системе координат хОу с центром в начале координат. Такую окружность называют единичной или тригонометрической. (рис.1)

Длина этой окружности как мы помним из уроков геометрии,
. А учитывая, что R=1,
, осями координат она поделена на четыре дуги, которые находятся соответственно в I, II, III и IV координатных четвертях.
Вычислите длину каждой дуги.
Ответ. длина каждой дуги равна
части окружности или 
Длина полуокружности равна
А так как образовался развернутый угол, то
180
.
Рассмотрим дугу, равную по длине радиусу единичной окружности. Полученный центральный угол РОМ равен длине дуги МР=R.
рис.3
Определение. Углом в 1 радиан называется центральный угол, опирающийся на дугу, равную по длине радиусу окружности.
Обозначается 1рад.
;

α рад=(180/π α)° (1)
Длину дуги l окружности радиуса R (рис.4)

можно вычислять по формуле
(3)
А площадь S кругового сектора радиуса R и дугой
рад (рис.5)

находят по формуле:
, где
(4)
Вернёмся к единичной окружности в координатной плоскости.
Каждая точка этой окружности будет иметь координаты х и у такие, что выполняются неравенства -1≤ х ≤ 1; -1≤ у ≤ 1.
Введём понятие поворота точки.

Пусть
Тогда точка А(1;0) будет двигаться по единичной окружности против часовой стрелки. Она пройдёт путь α рад от точки А(1;0) до точки В. Говорят, точка В получена из точки А поворотом на угол 
Пусть
точка А(1;0) будет двигаться по единичной окружности по часовой стрелки . Она пройдёт путь α рад от точки А(1;0)до точки С. Говорят, точка С получена из точки А поворотом на угол - α.
При повороте на 0 рад точка остаётся на месте.
Давайте рассмотрим такой пример:
при повороте точки М(1;0) на угол
получается точка N (0;1). В эту же точку можно попасть из точки М(1;0) при повороте на
угол
(рис.6)

Примеры и разбор решения заданий тренировочного модуля
Переведите из радианной меры в градусную:
;
;
;
;
;
;
;
;;
;
;
;
.
Переведите из градусной меры в радианную:
300; 1500; 3000; 21000, 3500; 3600; 7000; 350; 600; 7600; 450; 600
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/587151-plan-uroka-po-teme-radiannaja-mera-ugla
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Реализация ФГОС НОО: содержание Стандарта и особенности проектирования образовательных программ»
- «Образовательная программа дополнительного образования детей»
- «Индивидуальная работа педагога с родителями учеников»
- «Основы сурдопедагогики»
- «Инновационные подходы к обучению и воспитанию в ДОУ»
- «Формы и методы работы социального педагога»
- Методы и технологии преподавания английского языка в образовательной организации
- Логопедическая работа при нарушениях речи у детей дошкольного возраста
- Преподавание в организации среднего профессионального образования
- Подготовка детей к обучению в школе: содержание и организация работы с детьми
- Деятельность учителя-методиста в рамках сопровождения реализации общеобразовательных программ
- Информатика: теория и методика преподавания в образовательной организации

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.