- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- «Теоретические и практические аспекты работы с детьми с расстройствами аутистического спектра»
- «Использование системы альтернативной и дополнительной коммуникации в работе с детьми с ОВЗ»
- Курс-практикум «Профессиональная устойчивость и энергия педагога»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Календарно тематическое планирование по геометрии 8 класс
Календарно-тематическое планирование по геометрии 8 класс
Недельный план | № урока | Тема урока | Элементы содержания | Оснащённость урока | Требования к уровню подготовки | Критерии оценки | Тип урока Формы и методы обучения | Домашнее задание | ||
1 | Повторение | Понятия, теоремы, свойства, признаки из разделов курса геометрииVII класса | Готовые чертежи | Групповой контроль. | ||||||
1неделя сентября | Уметь выполнять задачи из разделов курса VII класса: признаки равенства треугольников; соотношения между сторонами и углами треугольника; признаки и свойства параллельных прямых. Знать понятия: теорема, свойство, признак. | КУ | Решить задачи по карточкам | |||||||
Глава V. Четырёхугольники (14 ч) | ||||||||||
2 | Многоугольник. Выпуклый многоугольник Четырехугольник | Многоугольник, периметр многоугольника, выпуклый многоугольник, четырёхугольник Сумма углов выпуклого многоугольника | Доска, мел, метр, чертёжный треугольник | Знать понятия: многоугольник, периметр многоугольника, выпуклый многоугольник, четырёхугольник Уметь назвать элементы многоугольника, вывести формулу суммы углов выпуклого многоугольника, находить углы многоугольников, их периметры | Оценка устных ответов обучающихся по математикеОтвет оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. | УИНМ | Тематический и групповой контроль. | §1 П.39 – 41, вопросы 1 – 5 определения, формулы | ||
2 неделя сентября | 3 | Многоугольник. Выпуклый многоугольник Четырехугольник | Метр, чертёжный треугольник Доска, мел | Знать понятия: многоугольник, периметр многоугольника, выпуклый многоугольник, четырёхугольник Уметь назвать элементы многоугольника, вывести формулу суммы углов выпуклого многоугольника, находить углы многоугольников, их периметры | Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. | УЗР ЗУН | §1 П.39 – 41, вопросы 1 – 5 определения, формулы | |||
4 | Параллелограмм | Параллелограмм | Метр, чертёжный треугольник Доска, мел | Знать определение параллелограмма Уметь правильно строить параллелограмм | Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. | УИНМ | МД. Взаимный контроль. | §2, п. 42 вопросы 6 – 8 определение. свойства | ||
3 неделя сентября | 5 | Признаки параллелограмма | Свойства и признаки параллелограмма | Плакат Доска, мел | Знать формулировки свойств и признаков параллелограмма | Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. | УЗР ЗУН | §2,п. 43, вопрос 9, | ||
6 | Признаки параллелограмма | Плакат Доска, мел | уметьих доказывать и применять при решении задач | СР | §2,п. 43, вопрос 9 | |||||
4 неделя сентября | 7 | Трапеция | Трапеция, равнобедренная трапеция, свойства равнобедренной трапеции, теорема Фалеса | Метр, чертёжный треугольник | Знать определение трапеции, виды трапеций, формулировки свойств равнобедренной трапеции, теорему Фалеса уметьих доказывать и применять при решении задач | Оценка устных ответов обучающихся по математикеОтвет оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. | УИНМ | §2, п.44, выучить доказательство теоремы Фалеса №384 №385 | ||
8 | Параллелограмм и трапеция | Параллелограмм. Трапеция, равнобедренная трапеция, свойства равнобедренной трапеции, теорема Фалеса | Доска, мел, метр, чертёжный треугольник | Знать определение параллелограмма, трапеции, виды трапеций, формулировки свойств, теорему Фалеса уметьих доказывать и применять при решении задач | Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. | УЗР ЗУН | ФО | §2. П.42 - 44, прочитать решение задач №396, № 393(в) | ||
5 неделя сентября, 1 неделя октября | 9 | Параллелограмм и трапеция | Параллелограмм. Трапеция, равнобедренная трапеция, свойства равнобедренной трапеции, теорема Фалеса | Метр, чертёжный треугольник | Знать определение параллелограмма, трапеции, виды трапеций, формулировки свойств, теорему Фалеса уметьих доказывать и применять при решении задач | Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. | УЗР ЗУН | СР | §2, п.42 – 44 | |
10 | Прямоугольник, ромб и квадрат | Прямоугольник, свойства и признаки прямоугольника | Метр, чертёжный треугольник | Знать определение прямоугольника, формулировки его свойств и признаков. Уметьдоказывать изученные теоремы и применять их при решении задач | Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. | УИНМ | §3, п.45, вопросы 12, 13 | |||
2 неделя октября | 11 | Прямоугольник, ромб и квадрат | Прямоугольник, свойства и признаки прямоугольника | Метр, чертёжный треугольник | Знать определение ромба и квадрата, формулировки их свойств и признаков Уметьдоказывать изученные теоремы и применять их при решении задач | УЗР ЗУН | СР | §3, п.46, Вопросы 14 – 15 стр. 115 | ||
12 | Прямоугольник, ромб и квадрат | Прямоугольник, свойства и признаки прямоугольника | Метр, чертёжный треугольник | Знать определение прямоугольника, ромба и квадрата, формулировки их свойств и признаков Уметьдоказывать изученные теоремы и применять их при решении задач | УПЗ | Самоконтроль и индивидуальный контроль. | §3, п.45,п.46 Вопросы 12 – 15 | |||
3 неделя октября | 13 | Осевая и центральная симметрия. | Осевая симметрия, центральная симметрия | Метр, циркуль плакат | Знать определения симметричных точек и фигур относительно прямой и точки. Уметь строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией. | УИНМ | Практическая работа. | §3, п.47, Вопросы 16 – 20 | ||
14 | Решение задач | Параллелограмм , трапеция, прямоугольник, ромб, квадрат, осевая и центральная симметрии | Метр, чертёжный треугольник | уметь решать задачи, опираясь на изученные свойства | УПЗУН | Групповой, устный и письменный контроль. | §3, п.45 – 47 Вопросы 12 – 20 | |||
4 неделя октября | 15 | Контрольная работа № 1 по теме: «Четырехугольники» | карточки | Уметь применять все изученные формулы и теоремы при решении задач | Оценка письменных контрольных работ учащихся | КР | Тематический контроль | |||
ГлаваVI. Площадь (14 ч) | ||||||||||
16 | Площадь многоугольника. | Площадь многоугольника Площадь прямоугольника | Метр, чертёжный треугольник | Знатьосновные свойства площадей и формулу для вычисления площади прямоугольника | УИНМ | §1, п.48,п.49 Вопросы 1, 2. | ||||
2 неделя ноября | 17 | Площадь прямоугольника | Метр, чертёжный треугольник | Уметь вывести формулу для вычисления площади прямоугольника и использовать ее при решении задач | Оценка устных ответов обучающихся по математикеОтвет оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. | §1, п.50 Вопрос 3. | ||||
18 | Площадь параллелограмма | Площадь параллелограмма | Доска, мел, метр, чертёжный треугольник | Знать формулы для вычисления площади параллелограмма | Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. | УИНМ | §2, п.51 Вопрос 4. | |||
3 неделя ноября | 19 | Площадь параллелограмма | Метр, чертёжный треугольник | Уметь их доказывать и применять все изученные формулы при решении задач | Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. | §2, п.51 Вопрос 4. | ||||
20 | Площадь треугольника | Площадь треугольника. Теорема об отношении площадей треугольников, имеющих по равному углу | Метр, чертёжный треугольник | Знать формулы для вычисления площади треугольника,теорему об отношении площадей треугольников, имеющих по равному углу | Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. | УИНМ | Фронтальный опрос. | §2, п.52 Вопрос 5. | ||
4 неделя ноября | 21 | Площадь треугольника | Доска, мел, метр, чертёжный треугольник | Уметь их доказывать и применять все изученные формулы при решении задач | Ответ оценивается отметкой «5», если ученик: | КУ | §2, п.52 Вопрос 6. | |||
22 | Площадь трапеции | Площадь трапеции | Метр, чертёжный треугольник | Знать формулу для вычисления площади трапеции Уметь её доказывать и применять при решении задач | УИНМ | СР | §2, п.53 Вопрос 7. Повторить формулы для | |||
5 неделя ноября | 23 | Площадь трапеции | Доска, мел, метр, чертёжный треугольник | УПЗ | вычисления площади прямоугольника, квадрата, ромба, треугольника, трапеции | |||||
24 | Теорема Пифагора | Теорема Пифагора. Пифагоровы тройки | Метр, чертёжный треугольник | Знать теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки. | УИНМ | МД. Взаимный контроль. | §3, п.54 Вопрос 8. | |||
1 неделя декабря | 25 | Теорема Пифагора | Уметьдоказывать теоремы и применять их при решении задач (находить неизвестную величину в прямоугольном треугольнике) | УПЗ | СР | §3, п.54 Вопрос 8. | ||||
26 | Теорема, обратная теореме Пифагора | Теорема, обратная теореме Пифагора. Египетский треугольник | Доска, мел, метр, чертёжный треугольник | Знать теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки. | УИНМ | §3, п.55 Вопросы 9, 10. | ||||
2 неделя декабря | 27 | Решение задач | Площадь прямоугольника. Площадь треугольника. Теорема об отношении площадей треугольников, имеющих по равному углу | Метр, чертёжный треугольник | Демонстрация ЗУН при решении задач | УПЗ | СР | §3, п.54, п.55 Вопросы 8 – 10. | ||
28 | Решение задач | Теорема Пифагора. Теорема, обратная теореме Пифагора | Доска, мел, метр, чертёжный треугольник | Демонстрация ЗУН при решении задач | УПЗУН | §3, п.54, п.55 Вопросы 8 – 10. стр.133 | ||||
3 неделя декабря | 29 | Контрольная работа № 2 по теме: «Площадь» | карточки | Уметь применять все изученные формулы и теоремы при решении задач | Оценка письменных контрольных работ учащихся | КР | Тематический контроль | |||
ГлаваVII. Подобные треугольники(19 ч) | ||||||||||
30 | Пропорциональные отрезки. Определение подобных треугольников. | Пропорциональные отрезки Подобные треугольники | Метр, чертёжный треугольник | Знатьопределения пропорциональных отрезков и подобных треугольников Уметьопределять подобные треугольники, находить неизвестные величины из пропорциональных отношений, применять теорию при решении задач | УИНМ | §1, п.56, п.57 Вопросы 1 – 3. стр. 160 | ||||
4 неделя декабря | 31 | Отношение площадей подобных треугольников | Теорема об отношении площадей подобных треугольников Свойство биссектрисы треугольника | Доска, мел, метр, чертёжный треугольник | Знатьтеорему об отношении площадей подобных треугольников и свойство биссектрисы треугольника Уметьнаходить неизвестные величины из пропорциональных отношений, применять теорию при решении задач | Оценка устных ответов обучающихся по математикеОтвет оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. | УИНМ | Фронтальный опрос. | §1, п.58 Вопрос 4. стр. 160 повторить п.52 | |
32 | Признаки подобия треугольников | Первый признак подобия треугольников | Метр, чертёжный треугольник | Знатьпризнаки подобия треугольников Уметьдоказывать признаки подобия и применять их при решении задач | Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. | УИНМ | §2, п.59 Вопрос 5. стр. 160 | |||
3 неделя января | 33 | Признаки подобия треугольников | Второй признак подобия треугольников | Доска, мел, метр, чертёжный треугольник | Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. | КУ | §2, п.60 Вопрос 6. стр. 160 | |||
34 | Признаки подобия треугольников | Третий признак подобия треугольников | Доска, мел, метр, чертёжный треугольник | Знатьпризнаки подобия треугольников | Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. | КУ | §2, п.61 Вопрос 7. стр. 160 | |||
4 неделя января | 35 | Признаки подобия треугольников | Доска, мел, метр, чертёжный треугольник | КУ | СР | §2, п.59 – 61 Вопросы 5 – 7 | ||||
36 | Признаки подобия треугольников | Признаки подобия треугольников | Уметьдоказывать признаки подобия и применять их при решении задач | УПЗ | ||||||
5 неделя января | 37 | Контрольная работа № 3 по теме «Подобные треугольники» | карточки | Уметь применять все изученные формулы и теоремы при решении задач | Оценка письменных контрольных работ учащихся | КР | Тематический контроль | |||
38 | Применение подобия к доказательству теорем и решению задач. Средняя линия треугольника | Средняя линия треугольника Теорема о средней линии треугольника | Метр, чертёжный треугольник | Знать теорему о средней линии треугольника Уметь доказывать теорему и применять при решении задач | УИНМ | Взаимный контроль. | §3, п.62 Вопросы 8, 9. стр. 160 | |||
1 неделя февраля | 39 | Средняя линия треугольника | Доска, мел, метр, чертёжный треугольник | КУ | §3, п.62 Вопросы 8, 9. стр. 160 | |||||
40 | Пропорциональные отрезки в прямоугольном треугольнике | Пропорциональные отрезки в прямоугольном треугольнике Теоремы о точке пересечения медиан треугольника | Метр, чертёжный треугольник | Знать теоремы о точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике | УИНМ | Самоконтроль и индивидуальный контроль. | §3, п.63 Вопросы 10, 11. стр. 160 | |||
2 неделя февраля | 41 | Пропорциональные отрезки в прямоугольном треугольнике | Доска, мел, метр, чертёжный треугольник | Уметь доказывать эти теоремы и применять при решении задач | КУ | §3, п.63 Вопросы 10, 11. стр. 160 | ||||
42 | Практические приложения подобия треугольников. О подобии произвольных фигур | Практические приложения подобия треугольников Подобие произвольных фигур | Метр, чертёжный треугольник | Уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение | Оценка устных ответов обучающихся по математикеОтвет оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. | УИНМ | Фронтальный опрос. | §3, п.64 Вопросы 12, 13. стр. 161 | ||
3 неделя февраля | 43 | Практические приложения подобия треугольников. О подобии произвольных фигур | Доска, мел, метр, чертёжный треугольник | Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. | КУ | §3, п.64 Вопросы 12, 13. стр. 161 | ||||
44 | Практические приложения подобия треугольников. О подобии произвольных фигур | Метр, чертёжный треугольник | Уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение | Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. | КУ | §3, п.65 Вопрос 14. стр. 161 | ||||
4 неделя февраля | 45 | Соотношения между сторонами и углами прямоугольного треугольника. Синус, косинус и тангенс острого угла прямоугольного треугольника | Синус, косинус и тангенс острого угла прямоугольного треугольника | Метр, чертёжный треугольник | Знать определения синуса, косинуса и тангенса острого угла прямоугольного треугольника Уметь решать задачи на нахождение синуса, косинуса и тангенса острого угла прямоугольного треугольника | Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. | УИНМ | Самоконтроль и индивидуальный контроль. | §4, п.66 Вопросы 10, 11. стр. 161 | |
46 | Значения синуса, косинуса, тангенса. | Значения синуса, косинуса, тангенса углов 30°, 45° и 60, метрические соотношения | Метр, чертёжный треугольник | Знать значения синуса, косинуса и тангенса для углов 30, 45 и 60, метрические соотношения Уметь доказывать основное тригонометрическое тождество, решать задачи | УИНМ | СР | §4, п.67 Вопрос 18. стр. 161 | |||
1 неделя марта | 47 | Синус, косинус и тангенс острого угла прямоугольного треугольника. Значения синуса, косинуса, тангенса | Синус, косинус и тангенс острого угла прямоугольного треугольника. Значения синуса, косинуса, тангенса углов 30°, 45° и 60, метрические соотношения | Плакат Доска, мел, метр, чертёжный треугольник | Знать значения синуса, косинуса и тангенса для углов 30, 45 и 60, метрические соотношения Уметь доказывать основное тригонометрическое тождество, решать задачи | УПЗУН | §4, п.62 – 67 Вопросы 8 – 18. стр.160, 161 | |||
48 | Контрольная работа № 4 по теме: «Подобные треугольники» | карточки | Уметь применять все изученные формулы и теоремы при решении задач | Оценка письменных контрольных работ учащихся | КР | Тематический контроль | ||||
ГлаваVIII.Окружность (17 ч) | ||||||||||
2 неделя марта | 49 | Взаимное расположение прямой и окружности | Взаимное расположение прямой и окружности | Циркуль Метр, чертёжный треугольник | Знатьвозможные случаи взаимного расположения прямой и окружности Уметьих применять при решении задач | УИНМ | §1, п.68 Вопросы 1, 2. стр. 187 | |||
50 | Касательная к окружности. | Касательная, свойство и признак касательной | Циркуль Метр, чертёжный треугольник | Знатьопределение касательной, свойство и признак касательной | Оценка устных ответов обучающихся по математикеОтвет оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. | УИНМ | Фронтальный опрос. | §1, п.69 Вопросы 3 – 7. стр. 187 | ||
3 неделя марта | 51 | Касательная к окружности. | Доска, мел, метр, чертёжный треугольник, циркуль | Уметьих доказывать и применять при решении задач, выполнять задачи на построение окружностей и касательных, определять отрезки хорд окружностей | Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. | §1, п.69 Вопросы 3 – 7. стр. 187 | ||||
52 | Центральные и вписанные углы. Градусная мера дуги окружности. | Дуга, полуокружность, градусная мера дуги окружности, центральный угол | Циркуль Метр, чертёжный треугольник | Знать , какой угол называется центральным и какой вписанным, как определяется градусная мера дуги | Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. | УИНМ | Самоконтроль и индивидуальный контроль. | §2, п.70 Вопросы 8 – 10. стр. 187 | ||
1 неделя апреля | 53 | Градусная мера дуги окружности. | Циркуль Метр, чертёжный треугольник | окружности Уметь применять при решении задач | Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. | КУ | §2, п.70 Вопросы 8 – 10. стр. 187 | |||
54 | Теорема о вписанном угле. | Вписанный угол, теорема о вписанном угле | Циркуль Метр, чертёжный треугольник | Знать теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд. | УИНМ | СР | §2, п.71 Вопросы 11 – 13. стр. 187 | |||
2 неделя апреля | 55 | Теорема о вписанном угле. | Уметь доказывать эти теоремы и применять при решении задач | Оценка устных ответов обучающихся по математикеОтвет оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. | КУ | §2, п.71 Вопросы 11 – 13. стр. 187 | ||||
56 | Четыре замечательные точки треугольника. Свойство биссектрисы угла и серединного перпендикуляра к отрезку. | Свойства биссектрисы угла и серединного перпендикуляра | Доска, мел, метр, чертёжный треугольник | Знатьтеоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия | Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. | УИНМ | §3, п.72 Вопросы 15, 16. стр. 187 | |||
3 неделя апреля | 57 | Свойство биссектрисы угла и серединного перпендикуляра к отрезку. | Свойства биссектрисы угла и серединного перпендикуляра | Доска, мел, метр, чертёжный треугольник | Уметьдоказывать эти теоремы и применять их при решении задач, выполнять построение замечательных точек треугольника. | Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. | КУ | Фронтальный опрос. Взаимный контроль. | §3, п.72 Вопросы 17 – 19. стр. 187, 188. | |
58 | Теорема о пересечении высот треугольника | Теорема о пересечении высот треугольника, замечательные точки треугольника | Доска, мел, метр, чертёжный треугольник | Знатьтеорему о пересечении высот треугольника Уметьдоказывать теорему и применять при решении задач, выполнять построение замечательных точек треугольника. | Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. | УИНМ | Фронтальный опрос. | §3, п.73 Вопрос 20. стр. 188 | ||
4 неделя апреля | 59 | Вписанная окружность | Вписанная окружность, описанный многоугольник, теорема о вписанной окружности | Циркуль Метр, чертёжный треугольник | Знать,какая окружность называется вписанной в многоугольник, теорему об окружности, вписанной в треугольник, свойства описанного четырехугольника Уметьдоказывать теорему и применять при решении задач | УИНМ | Взаимный контроль. | §4, п.74 Вопросы 21, 22, 23. стр. 188 | ||
60 | Описанная окружность | Описанная окружность, вписанный многоугольник, теорема об описанной окружности, теорема о сумме противоположных углов вписанного многоугольника | Циркуль Метр, чертёжный треугольник | Знать,какая окружность называется описанной около многоугольника, теорему об окружности, описанной около треугольника, свойства вписанного четырехугольника Уметь доказывать теорему и применять при решении задач | Оценка устных ответов обучающихся по математикеОтвет оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. | УИНМ | §4, п.75 Вопросы 24, 25. стр. 188 | |||
5 неделя апреля | 61 | Вписанная и описанная окружности | Вписанная окружность, описанный многоугольник, теорема о вписанной окружности. Описанная окружность, вписанный многоугольник, теорема об описанной окружности, теорема о сумме противоположных углов вписанного многоугольника | Циркуль Метр, чертёжный треугольник | Уметь применять полученные знания при решении задач | Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. | УПЗУН | Фронтальный опрос. | §4, п.74, 75 Вопросы 21 – 25. стр. 188 | |
62 | Вписанная и описанная окружности | Вписанная окружность, описанный многоугольник, теорема о вписанной окружности. Описанная окружность, вписанный многоугольник, теорема об описанной окружности, теорема о сумме противоположных углов вписанного многоугольника | Циркуль Метр, чертёжный треугольник | Уметь применять полученные знания при решении задач | Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. | КУ | СР | §4, п.74, 75 Вопросы 21 – 25. стр. 188 | ||
2 неделя мая | 63 | Решение задач | Касательная к окружности, центральный угол, вписанный угол, | Доска, мел, метр, чертёжный треугольник, циркуль | -уметь определять градусную меру центрального и вписанного угла; | Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. | УПЗ | Фронтальный опрос. Взаимный контроль. | п.68 – 75 Вопросы 1 – 25. стр. 187, 188 | |
64 | Решение задач | замечательные точки треугольника, вписанная и описанная окружность | Доска, мел, метр, чертёжный треугольник | -уметь решать задачи с использованием замечательных точек треугольника; -знать, чему равна сумма противоположных углов вписанного многоугольника | УПЗ | п.68 – 75 Вопросы 1 – 25. стр. 187, 188 | ||||
3 неделя мая | 65 | Контрольная работа № 5 по теме: «Окружность» | карточки | Демонстрация ЗУН при решении задач | Оценка письменных контрольных работ учащихся | КР | Тематический контроль | |||
66 | Повторение. Решение задач. | Четырёхугольники, подобные треугольники, окружность | Доска, мел, метр, чертёжный треугольник | Уметь применять полученные знания при решении задач | ПОУ | Фронтальный опрос. | ||||
4 неделя мая | 67 | Повторение. Решение задач. | площадь многоугольника, | Доска, мел, метр, чертёжный треугольник | Уметь применять полученные знания при решении задач | |||||
68 | Повторение. Решение задач. | подобные треугольники, окружность | Доска, мел, метр, чертёжный треугольник | Уметь применять полученные знания при решении задач | ||||||
75
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/87602-kalendarnotematicheskoe-planirovanie-po-geom
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Музыкальное воспитание и развитие детей дошкольного возраста»
- «Психолог в социальной сфере: содержание и методы психосоциальной работы»
- «Особенности обучения музыке в начальных классах в соответствии с ФГОС НОО от 2021 года»
- «Реализация инвариантного модуля «Робототехника» учебного предмета «Труд (технология)» по ФГОС»
- «Групповая работа педагога с родителями обучающихся»
- «Организация работы с обучающимися с ОВЗ в практике учителя музыки»
- Теория и методика преподавания истории в общеобразовательной организации
- Педагог-воспитатель группы продленного дня. Теория и методика организации учебно-воспитательной работы
- Тьюторское сопровождение в образовательной организации
- Физическая культура и специфика организации адаптивной физической культуры для обучающихся с ОВЗ
- Управление в социальной сфере: обеспечение эффективной деятельности организации социального обслуживания
- Основы тифлопедагогики в работе педагога с обучающимися с нарушениями зрения

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.