- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Математические модели в экологии
Ханина Ольга Викторовна
зав. дневного отделения
ГБПОУ «Шадринский политехнический колледж»
Математические модели в экологии
В последнее время во всём мире возрос интерес к экологическим проблемам. Экология, как наука, использует самые разнообразные методы для решения этих проблем, в том числе и математический.
Историю применения математики в экологии справедливо принято исчислять с выхода в свет книги Томаса Мальтуса «Опыт о законе народонаселения» в 1798 году. В ней впервые чётко сформулировано преставление о том, что численность населения, которому предоставлена возможность неограниченно размножаться, растёт во времени в геометрической прогрессии.
Одну из простейших математических моделей для системы паразит – хозяин в динамике численности насекомых разработал в 1925 г. статистик Алфред Лотка, который вывел следующие уравнения:
где N1 – численность популяции хозяина; N2 – численность популяции паразита; r1 – удельная скорость увеличения популяции хозяина; d2 – удельная скорость гибели популяции паразита; p1 и р2 – константы.
1933 г. А. Никольсон, несколько усложнив математическую модель Лотки и введя в систему дополнительных хозяев и паразитов, показал, что это ослабляет осцилляции(периодический во времени и/или пространстве процесс изменения чего-либо).
В 1936 г. Андрей Николаевич Колмогоров разработал новые подходы и описал также возможности устойчивого стационарного состояния системы взаимодействующих через трофические связи видов.
Самым важным результатом исследовательских работ следует считать то, что в них было показано, как на основании биологически правдоподобных и допускающих экспериментальную проверку предположений о механизмах внутри- и межпопуляционных взаимодействий можно чисто математическими методами вывести некоторые заключения о характере динамики системы. Наиболее известным заключение такого рода явился вывод о возможности колебаний численности в системе двух популяций, взаимодействующих по принципу хищник- жертва.
Рассмотрим решение задачи, в которой используется такой принцип. Краткое описание задачи: На одной территории проживают 2 вида животных. Ni-зайцы,Ci-волки. В отсутствие хищников численность жертв Ni растёт с коэффициентом прироста r, т.е. Ni+1=Ni +rNi, Ni- количество жертв в момент времени i, r>0.
aNiCi- число встреч между особями обоих видов, где a>0- коэффициент пропорциональности, характеризующий вымирание жертв вследствие их встречи с хищником. Поэтому, считая, что численность жертв изменяется благодаря рождаемости (которая пропорциональна общей численности жертв с коэффициентом прироста равным r) и смертности, получим:
Ni+1=Ni +rNi - aNiCi
Рассуждая аналогично, имеем: численность хищников Ci в отсутствие жертв убывает с некоторым естественным коэффициентом смертности q , т.е.Сi+1=Сi- qCi , где Ci- численность хищников в момент времени i, q>0.
faNiCi- число встреч между видами где f>0- коэффициент пропорциональности, характеризующий потребность в пище хищника. Поэтому, считая, что численность хищников изменяется благодаря встречам с жертвами и скорости вымирания (которая пропорциональна общей численности хищников с коэффициентом вымирания равным q), получим:
Сi+1=Сi + faNiCi- qCi
Таким образом, взаимодействие хищника и жертвы можно описать с помощью системы уравнений:
Ni+1=Ni +rNi - aNiCi
Сi+1=Сi + faNiCi- qCi
Програмная реализация модели «хищник-жертва»
Данная модель реализуется на языке программированияPascal. Ниже приведен код программы.
program Model1;
var
T:integer;
N,C:array [0..100] of real;
i:integer;
r,a,q,f:real;
begin
writeln('введи количество дней');
readln(T);
r:=0.2;
a:=0.005;
q:=0.1;
f:=0.1;
writeln('введи количество зайцев');
readln(N[0]);
writeln('введи количество волков');
readln(C[0]);
for i:=0 to T do
begin
N[i+1]:=N[i]+r*N[i]-a*C[i]*N[i];
C[i+1]:=C[i]+f*a*C[i]*N[i]-q*C[i];
end;
writeln ('день заяц волк');
for i:=0 to T do
writeln(i,' ',N[i]:6:2,' ',C[i]:6:2);
readln;
end.
Продемонстрировать решение!!!
Реализуемзадачувсреде Microsoft Office Excel.
Сам файл с вычислениями запустить.
Продемонстрируем решения.
Результаты полученные в среде Excel и на языке Паскаль совпадают.
Итак, все результаты, полученные численно, являются наглядными, а поэтому и необходимы математические модели, которые позволяют оценить возможные последствия воздействия человека на природу и организовать его деятельность так, чтобы не допустить «экологической катастрофы».
В настоящее время задачи экологии имеют первостепенное значение, так как стала актуальной проблема контроля над численностью популяций живых организмов в сложных экологических системах. Иногда требуется восстановить популяцию животных, находящихся на грани вымирания, а бывают случаи, когда нужно сократить число некоторых вредителей и удерживать их популяцию в заданном количестве. При этом необходимо учесть, как те или иные изменения численности одной популяции отражаются на количестве особей остальных видов данной экосистемы. Подобные задачи решаемы, если проанализирована математическая модель, соответствующая требуемой ситуации.
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/87864-matematicheskie-modeli-v-jekologii
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Особенности социальной работы с людьми, затронутыми ВИЧ-инфекцией»
- «Организация образовательного процесса в соответствии с ФГОС СОО: преподавание географии»
- «Обучение работающего населения в области гражданской обороны и защиты от чрезвычайных ситуаций»
- «Содержание деятельности руководителя профессиональной образовательной организации в соответствии с профессиональным стандартом»
- «Психолого-педагогические аспекты работы с младшими школьниками»
- «Педагогическая деятельность в контексте ФГОС НОО и профессионального стандарта»
- Основы тифлопедагогики в работе педагога с обучающимися с нарушениями зрения
- Менеджмент социальной работы и управление организацией социального обслуживания
- Педагогика и методика начального образования
- Организация работы классного руководителя в образовательной организации
- Особенности обучения предмету «Труд (технология)»
- Социально-педагогическое сопровождение обучающихся в образовательном процессе

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.