Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
08.04.2015

Разработка урока геометрии по теме «Объём шара»

Некрасова Неля Анатольевна
преподаватель математики
Урок изучения нового материала по теме «Объём шара». На уроке актуализируются знания по теме «Шар и его элементы», затем выводится формула для объёма шара. Формирование знаний и умений происходит при решении проблемной задачи и задачи Архимеда, далее выполняется практическая работа и математический диктант. Обучающиеся в конце урока делают самопроверку, после чего подводится итог урока.

Содержимое разработки

ОБЪЁМ ШАРА

Некрасова Н.А., ГБОУ РХ НПО «ПУ-15» с. Бея

Цель:

вывести формулу объёма шара, проверить степень усвоения основного теоретического материала, умение применять формулы при решении задач; способствовать развитию представления о телах вращения и их применении в окружающем мире, установлению связи между теорией и практикой, закреплению навыков решения задач по теме; развивать умение применять полученные знания при решении нестандартных задач;

способствовать развитию творческого мышления, пространственного мышления при решении задач;

воспитывать ответственность, коммуникабельные качества, объективность в самооценке результатов работы.

Оборудование: компьютер, проектор, презентация, модели шаров.

Эпиграф: Образование есть то, что остаётся, когда всё выученное уже забыто (М. Лауэ)

Ход урока

Организационный момент (приветствие, определение отсутствующих, организация внимания)

- Сегодня у нас на урок решения задач творческого и практического содержания по теме «Объём шара». Сформулируйте каждый для себя цель урока.

Предполагаемые ответы:

- Вывести формулу объёма шара. Применение этой формулы при решении задач.

- Применение формулы объёма шара при решении не сложных задач.

- Применение формулы объёма шара при решении более сложных задач и задач практического содержания.

- Итак, цель сегодняшнего урока - вывести формулу объёма шара и её применение в окружающем мире. Девизом урока будут слова французского инженера-физика М. Лауэ «Образование есть то, что остаётся, когда всё выученное уже забыто».

2. Актуализация полученных знаний

Теоретический опрос (фронтальная работа)

Вспомните, определение шара и его элементов.

Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не больше данного R.

Радиусом шара называют всякий отрезок, соединяющий центр шара с точкой шаровой поверхности.

Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называетсядиаметром шара.

Концы любого диаметра шара называются диаметрально противоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара.

3.Изучение новой темы

Сегодня мы с вами выведем формулу для вычисления объема шара.

Теорема: Объем шара равен

Доказательство:

Мы уже знаем, что можно вычислять  объёмы  тел с помощью интегральной формулы

V=

Давайте посмотрим, как это можно сделать для вывода формулы  объема   шара.

(Учитель объясняет вывод формулы  объёма   шара  с помощью формулы, ученики делают записи в тетрадях).

Рассмотрим шар радиуса R с центром в точке О и выберем ось ОХ произвольным образом (рис192).Сечение шара плоскостью, перпендикулярной к оси ОХ и проходящий через точку М этой оси, является кругом с центом в точке М. Обозначим радиус этого круга через r, а его площадь через S(х), где х абсцисса точки М. Выразим S(х) через х и R. Из прямоугольного треугольника ОМС находим   . Тогда , где

Так как  , то заменяя r через выражение      получим    

Заметим, что эта формула верна для любого положения точки М на диаметре АВ, т.е. для всех х, удовлетворяющих условию

Применяя основную формулу для вычисления объемов тел при а= -R, b=R, получим

  

Теорема доказана.

 В практических приложениях часто указывается диаметр шара, поэтому в процессе решения задач полезно знать формулу , где D – диаметр шара

4.Формирование умений и навыков учащихся.

 ПРОБЛЕМНАЯ ЗАДАЧА: При уличной торговле арбузами весы отсутствовали. Однако выход был найден: арбуз диаметром 3 дм приравнивали по стоимости к трём арбузам диаметром 1 дм.

Что вы возьмете? Правы ли были продавцы 

Решение:

 Необходимо найти объемы данных арбузов.

и таких арбузов три, значит их общий объем равен

   Задача (Архимеда): На надгробном камне могилы Архимеда в Сиракузах изображен цилиндр с вписанным в него шаром. Это символ открытия формул объема шара и площади сферы, а также важного вывода, что «объем шара, вписанного в цилиндр в …раз меньше объема цилиндра и что также относятся площади поверхностей этих тел». Найдите отношение объема цилиндра к объему шара и отношение площади поверхности цилиндра к площади поверхности шара.

 Дано: в цилиндр вписан шар

Найти: отношение объёмов цилиндра и шара, отношение площадей поверхностей

 РЕШЕНИЕ:

                                                                                                                               Ответ:1,5

Одним из своих наивысших достижений Архимед считал доказательство того, что объём шара в полтора раза меньше объёма описанного около него цилиндра. Недаром шар, вписанный в цилиндр, был высечен на надгробии Архимеда в Сиракузах.

Задача.Площадь поверхности шара уменьшили 9 раз. Во сколько раз уменьшился объем шара?

Решение:       

Пусть радиус первого шара R, а уменьшенного r.

Поверхность шара  S1 = 4пR2,    стала  S2 = 4пR2/9 = 4п (R/3)2 = 4пr2  

Видим, что r = , т.е. радиус уменьшился в 3 раза.

Объем V1= 4/3 ПR3,   а объем V2= 4/3 пr3 = 4/3 п(R/3)3 =4/3 пR3 /27  =  V1 / 27.

Ответ:27

5.ПРАКТИЧЕСКАЯ РАБОТА «Вычисление объёма полушария»

Учащиеся получают модель полушария.

Задание: Выполнить необходимые измерения и вычислить объём полушария.

Измерения и вычисления проверяются сразу на уроке, используя формулы в данной программ.

6.Математический диктант

1. Вычислите объем шара, если его радиусR = 6 см. [R = 5 см].

2. Вычислите диаметр шара, если его объем V = 36π. [V= 32π/3].

3. Объем шара равен 256π/3 см3.  [288π см3]. Найдите площадь большего круга [длину окружности большего круга].

4. В цилиндр вписан шар радиуса R = 1 [R = 2]. Найдите отношение Vцил. : Vшара [Vшара : Vцил.].

Ответы к математическому диктанту:

ВариантI 1. 228π;           2. 3;     3. 16π;      4.

ВариантII 1. 500π/3;       2. 2;     3. 12π;      4.

7.Итог урока

 Оценить работу учащихся на уроке и выставить оценки.

 Диагностика (рефлексия).

На сегодняшнем уроке мы с вами вывели формулу  объема шара, выяснили, что данные тела имеют широкое практическое применение и сделали небольшое открытие, которое еще в 3 веке до нашей эры сделал Архимед.

Беседа по следующим вопросам:

Что было интересного сегодня на уроке?

Что вызвало трудности?

Какие умения приобрели сегодня?

Где могут пригодиться эти умения?

 Домашнее задание.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/122943-razrabotka-uroka-geometrii-po-teme-objom-shar

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки