- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Рабочая программа по математике для 8 класса
РАБОЧАЯ ПРОГРАММА
по математике
для 8 класса
на 2017-2018 учебный год
Пояснительная записка
Рабочая программа по алгебре разработана с учетом требований федерального компонента государственного образовательного стандарта основного общего образования по математике (ПРИКАЗ Минобразования РФ от 05.03.2004 N 1089 (ред. от 19.10.2009) "ОБ УТВЕРЖДЕНИИ ФЕДЕРАЛЬНОГО КОМПОНЕНТА ГОСУДАРСТВЕННЫХ ОБРАЗОВАТЕЛЬНЫХ СТАНДАРТОВ НАЧАЛЬНОГО ОБЩЕГО, ОСНОВНОГО ОБЩЕГО И СРЕДНЕГО (ПОЛНОГО) ОБЩЕГО ОБРАЗОВАНИЯ"), на основе «Программы. Математика. 5-6 классы. Алгебра. 7-9 классы. Алгебра и начала анализа. 10-11 классы / авт.-сост. И.И.Зубарева, А.Г. Мордкович.-М.Мнемозина, 2009», «Геометрия. Сборник рабочих программ. 7 – 9 классы: пособие для учителей общеобразоват.учреждений / составитель Т.А.Бурмистрова. – М.:Просвещение, 2011»,) и рассчитана на изучение математики учащимися 8 класса в течение 168 часов из расчета 5 часа в неделю. Рабочая программа ориентирована на использование УМК А.Г.Мордковича и УМК Л.С. Атанасяна.
ЦЕЛИ И ЗАДАЧИ:
Изучение математики направлено на достижение следующих целей:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитаниекультуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В рамках указанного предмета решаются следующие задачи:
развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, изображать планиметрические фигуры и простейшие геометрические конфигурации; развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучитьсвойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений, умения решения задач на вычисление геометрических величин с применением изученных свойств фигур и формул;
совершенствовать навыки решения задач на доказательство;
расширить знания учащихся о треугольниках, четырехугольниках и окружности.
Содержание предмета
Алгебраические дроби. Понятие алгебраической дроби. Основное свойство алгебраической дроби. Сокращение алгебраических дробей. Сложение и вычитание алгебраических дробей. Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Рациональное выражение. Рациональное уравнение. Решение рациональных уравнений (первые представления). Степень с отрицательным показателем.
Функция . Свойства квадратного корня. Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Функция , ее свойства и график. Выпуклость функции. Область. Значений функции. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Освобождение от иррациональности в знаменателе дроби. Модуль действительного числа. График функции . Формула .
Квадратичная функция. Функция . Функция , ее график, свойства. Функция , ее свойства, график. Гипербола. Асимптота. Построение графиков функций по известному графику функции . Квадратный трехчлен. Квадратичная функция, ее свойства и график. Понятие ограниченной функции. Построение и чтение графиков кусочных функций, составленных из функций . Графическое решение квадратных уравнений.
Квадратные уравнения. Квадратное уравнение. Приведенное (неприведенное) квадратное уравнение. Полное (неполное) квадратное уравнение. Корень квадратного уравнения. Решение квадратного уравнения методом разложения на множители, методом выделения полного квадрата. Дискриминант. Формулы корней квадратного уравнения. Параметр. Уравнение с параметром (начальные представления). Алгоритм решения рационального уравнения. Биквадратное уравнение. Метод введения новой переменной. Рациональные уравнения как математические модели реальных ситуаций. Частные случаи формулы корней квадратного уравнения. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Иррациональное уравнение. Метод возведения в квадрат.
Неравенства. Свойства числовых неравенств. Неравенство с пере6менной. Решение неравенств с переменной. Линейное неравенство. Равносильные неравенства. Равносильное преобразование неравенства. Квадратное неравенство. Алгоритм решения квадратного неравенства. Возрастающая функция. Убывающая функция. Исследование функций на монотонность (с использованием свойств числовых неравенств). Приближенные значения действительных чисел, погрешность приближение по недостатку и избытку. Стандартный вид числа.
Треугольник. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников. Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 90°. Решение прямоугольных треугольников. Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.
Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.
Окружность и круг. Центр, радиус, диаметр. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.
Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники.
Измерение геометрических величин. Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. Площадь четырехугольника. Связь между площадями подобных фигур.
Построения с помощью циркуля и линейки. Деление отрезка на правных частей, построение четвертого пропорционального отрезка.
Учебно-тематический план
№ | Разделы программы | Количество часов |
1 | Повторение курса 7 класса | 7 |
2 | Алгебраические дроби. | 19 |
3 | Четырехугольники. | 14 |
4 | Функция . Свойства квадратного корня. | 17 |
5 | Площадь фигур. | 14 |
6 | Квадратичная функция. Функция . | 16 |
7 | Подобные треугольники. | 20 |
8 | Квадратные уравнения. | 21 |
9 | Окружность. | 16 |
10 | Неравенства. | 14 |
11 | Обобщающее повторение. | 14 |
Итого | 170 | |
Требования к уровню подготовки УЧАЩИХСЯ
В результате изучения математики ученик должен
знать/понимать
существо понятия математического доказательства; приводить примеры доказательств;
существо понятия алгоритма; приводить примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
основные понятия и определения геометрических фигур по программе;
формулировки основных теорем и их следствий
уметь
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия с алгебраическими дробями; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;
решать линейные и квадратные неравенства с одной переменной;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать множество решений линейного неравенства;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, неравенств;
описывать свойства изученных функций, строить их графики;
пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры, выполнять чертежи по условию задач, осуществлять преобразования фигур;
решать задачи на вычисление геометрических величин, применяя изученные свойства фигур и формулы;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними и применяя дополнительные построения, алгебраический аппарат и соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы и обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
владеть алгоритмами решения основных задач на построение;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами;
описания реальных ситуаций на языке геометрии;
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир);
владения практическими навыками использования геометрических инструментов для изображения фигур, а также нахождения длин отрезков и величин углов.
КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ ПЛАН
№ | Дата | Тема раздела, урока | |
По плану | Факт. | ||
1 | 05.09 | Уравнения и системы уравнений. Числовые выражения. | |
2 | 05.09 | Степень с натуральным показателем. Алгебраические выражения. | |
3 | 06.09 | Начальные геометрические сведения. Равнобедренный треугольник | |
4 | 07.09 | Многочлены | |
5 | 08.09 | Признаки равенства треугольников | |
6 | 12.09 | Разложение многочленов на множители | |
7 | 12.09 | Входная контрольная работа | |
8 | 13.09 | Многоугольники. | |
9 | 14.09 | Понятие алгебраической дроби и ее значение. | |
10 | 15.09 | Многоугольники. Решение задач. | |
11 | 19.09 | Основное свойство дроби. Сокращение дробей. | |
12 | 19.09 | Сложение и вычитание дробей с одинаковыми знаменателями. | |
13 | 20.09 | Параллелограмм | |
14 | 21.09 | Сложение алгебраических дробей с разными знаменателями. | |
15 | 22.09 | Признаки параллелограмма | |
16 | 26.09 | Вычитание алгебраических дробей с разными знаменателями. | |
17 | 26.09 | Преобразование выражений. | |
18 | 27.09 | Решение задач по теме «Параллелограмм». | |
19 | 28.09 | Сложение и вычитание алгебраических дробей. | |
20 | 29.09 | Трапеция | |
21 | 03.10 | К.р. №1 Сложение и вычитание алгебраических дробей. | |
22 | 03.10 | Умножение и деление алгебраических дробей. | |
23 | 04.10 | Теорема Фалеса | |
24 | 05.10 | Возведение алгебраической дроби в степень. | |
25 | 06.10 | Решение задач на трапецию | |
26 | 10.10 | Преобразование рациональных выражений. | |
27 | 10.10 | Преобразование выражений | |
28 | 12.10 | Примеры на преобразование выражений. | |
29 | 13.10 | Прямоугольник. Ромб. Квадрат. | |
30 | 17.10 | Понятие рационального уравнения. | |
31 | 17.10 | Решение рациональных уравнений. | |
32 | 18.10 | Решение задач. Прямоугольник. Ромб. Квадрат. | |
33 | 19.10 | Степень с отрицательным показателем | |
34 | 20.10 | Осевая и центральная симметрии | |
35 | 24.10 | Свойства степеней. | |
36 | 24.10 | Преобразование выражений | |
37 | 25.10 | Решение задач. | |
38 | 26.10 | К.р. №2 Рациональные выражения. | |
39 | 27.10 | К.р. №1 Четырехугольники | |
40 | 07.11 | Множество рациональных чисел | |
41 | 07.11 | Рациональные числа. | |
42 | 08.11 | Площадь многоугольника. | |
43 | 09.11 | Понятие квадратного корня из неотрицательного числа | |
44 | 10.11 | Площадь прямоугольника. | |
45 | 14.11 | Иррациональные числа. | |
46 | 14.11 | Множество действительных чисел | |
47 | 15.11 | Площадь параллелограмма. | |
48 | 16.11 | Функция . | |
49 | 17.11 | Площадь треугольника. | |
50 | 21.11 | Свойства функции . | |
51 | 21.11 | Свойства квадратных корней. | |
52 | 22.11 | Теорема об отношении площадей треугольников, имеющих по равному углу | |
53 | 23.11 | Применение свойств квадратного корня. | |
54 | 24.11 | Площадь трапеции. | |
55 | 28.11 | Преобразование выражений, содержащих квадратные корни. | |
56 | 28.11 | Преобразования иррациональных выражений | |
57 | 29.11 | Решение задач на вычисление площадей фигур. | |
58 | 30.11 | Преобразование выражений. | |
59 | 01.12 | Решение задач на нахождение площади. | |
60 | 05.12 | Модуль действительного числа. | |
61 | 05.12 | Функция. | |
62 | 06.12 | Теорема Пифагора. | |
63 | 07.12 | Упрощение выражений. | |
64 | 08.12 | Теорема, обратная теореме Пифагора. | |
65 | 12.12 | Преобразование выражений | |
66 | 12.12 | К.р. №3 Функция . | |
67 | 13.12 | Решение задач по теме «Теорема Пифагора». | |
68 | 14.12 | Функцияy=kx2. | |
69 | 15.12 | Решение задач по теме «Площадь» | |
70 | 19.12 | Свойства функции y=kx2. | |
71 | 19.12 | Построение графика функции y=kx2. | |
72 | 20.12 | Решение задач. Формула Герона. | |
73 | 21.12 | Функцияи ее свойства. | |
74 | 22.12 | Определение подобных треугольников. | |
75 | 26.12 | График функции . | |
76 | 26.12 | График функции . | |
77 | 27.12 | Отношение площадей подобных треугольников | |
78 | 28.12 | Построение графика функций | |
79 | 29.12 | Первый признак подобия треугольников. | |
80 | 16.01 | График функции . | |
81 | 16.01 | Построение графика функций y=f(x+l)+m. | |
82 | 17.01 | Решение задач на применение первого признака подобия треугольников. | |
83 | 18.01 | Преобразования графиков функций. | |
84 | 19.01 | Второй и третий признаки подобия треугольников. | |
85 | 23.01 | Функцияy=ax2+bx+c, ее свойства и график. | |
86 | 23.01 | Алгоритм построения графика квадратичной функции. | |
87 | 24.01 | Решение задач на применение признаков подобия треугольников | |
88 | 25.01 | Построения графика квадратичной функции. | |
89 | 26.01 | Решение задач. Признаки подобия треугольников. |
90 | 30.01 | Графическое решение квадратных уравнений. | |
91 | 30.01 | Решение уравнений с помощью графиков | |
92 | 31.01 | К.р.№3. Признаки подобия треугольников | |
93 | 01.02 | К.р.№4 Квадратичная функция. Функция . | |
94 | 02.02 | Средняя линия треугольника. | |
95 | 06.02 | Понятия, связанные с квадратным уравнением | |
96 | 06.02 | Неполные квадратные уравнения. | |
97 | 07.02 | Свойство медиан треугольника. | |
98 | 08.02 | Формулы корней квадратных уравнений. | |
99 | 09.02 | Пропорциональные отрезки. | |
100 | 13.02 | Решение квадратных уравнений. | |
101 | 13.02 | Решение уравнений с помощью формулы корней. | |
102 | 14.02 | Пропорциональные отрезки в прямоугольном треугольнике. | |
103 | 15.02 | Рациональные уравнения. | |
104 | 16.02 | Измерительные работы на местности. | |
105 | 20.02 | Решение рациональных уравнений. | |
106 | 20.02 | Решение квадратных и дробно-рациональных уравнений. | |
107 | 21.02 | Задачи на построение методом подобия. | |
108 | 22.02 | К.р. №5 Формула корней квадратных уравнений | |
109 | 27.02 | Математические модели реальных ситуаций. | |
110 | 27.02 | Решение задач с помощью рациональных уравнений. | |
111 | 28.02 | Синус, косинус и тангенс острого угла прямоугольного треугольника | |
112 | 01.03 | Решение текстовых задач. | |
113 | 02.03 | Значения синуса, косинуса и тангенса для углов 300, 450 и 600 | |
114 | 06.03 | Формула корней квадратного уравнения с четным вторым коэффициентом. | |
115 | 06.03 | Решение квадратных уравнений. | |
116 | 07.03 | Соотношения между сторонами и углами прямоугольного треугольника. Решение задач | |
117 | 09.03 | Решение задач. Подобие треугольников. Соотношения между сторонами и углами прямоугольного треугольника | |
118 | 13.03 | Теорема Виета. | |
119 | 13.03 | Разложение квадратного трехчлена на линейные множители. | |
120 | 14.03 | К.р. №4. Подобие треугольников. Соотношения между сторонами и углами прямоугольного треугольника | |
121 | 15.03 | Иррациональные уравнения. | |
122 | 16.03 | Взаимное расположение прямой и окружности | |
123 | 20.03 | Уравнения, содержащие радикалы | |
124 | 20.03 | Решение задач с помощью уравнений | |
125 | 21.03 | Касательная к окружности | |
126 | 22.03 | К.р.№7 Модели реальных ситуаций. | |
127 | 23.03 | Касательная к окружности. Решение задач. | |
128 | 03.04 | Решение уравнений | |
129 | 03.04 | Свойства числовых неравенств. | |
130 | 04.04 | Градусная мера дуги окружности | |
131 | 05.04 | Числовые неравенства и их свойства. | |
132 | 06.04 | Теорема о вписанном угле | |
133 | 10.04 | Решение числовых неравенств. | |
134 | 10.04 | Монотонность функций. | |
135 | 11.04 | Теорема об отрезках пересекающихся хорд. | |
136 | 12.04 | Исследование функций на монотонность. | |
137 | 13.04 | Решение задач по теме «Центральные и вписанные углы». | |
138 | 17.04 | Решение линейных неравенств. | |
139 | 17.04 | Линейные неравенства. | |
140 | 18.04 | Свойства биссектрисы угла |
141 | 19.04 | Решение квадратных неравенств. | |
142 | 20.04 | Серединный перпендикуляр | |
143 | 24.04 | Квадратные неравенства. | |
144 | 24.04 | Решение систем неравенств. | |
145 | 25.04 | Теорема о точке пересечения высот треугольника | |
146 | 26.04 | Приближенные значения действительных чисел | |
147 | 27.04 | Вписанная окружность | |
148 | 02.05 | Свойство описанного четырехугольника | |
149 | 03.05 | Стандартный вид числа. | |
150 | 04.05 | Описанная окружность | |
151 | 08.05 | Решение неравенств. | |
152 | 08.05 | К.р.№8 Неравенства. | |
153 | 10.05 | Графики функций | |
154 | 11.05 | Свойство вписанного четырехугольника | |
155 | 15.05 | Построение и чтение графиков функций | |
156 | 15.05 | Решение уравнений | |
157 | 16.05 | Решение задач по теме «Окружность» | |
158 | 17.05 | К.р. №5 Окружность | |
159 | 18.05 | Решение дробно-рациональных уравнений | |
160 | 22.05 | Решение задач с помощью уравнений | |
161 | 22.05 | Степень с целым показателем. Квадратный корень. | |
162 | 23.05 | Итоговая контрольная работа. | |
163 | 24.05 | Повторение «Четырехугольники. Площадь» | |
164 | 25.05 | Повторение «Подобие треугольников» | |
165 | 29.05 | Неравенства | |
166 | 29.05 | Преобразование выражений | |
167 | 30.05 | Повторение «Окружность» | |
168 | Занимательная геометрия | ||
169 | 31.05 | Решение текстовых задач | |
170 | Математика вокруг нас |
ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ
Мордкович А. Г. Алгебра. 8 класс: в 2 ч. Ч.1: учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - М.: Мнемозина, 2013.
Мордкович А. Г. Алгебра. 8 класс: в 2 ч. Ч.2 задачник для учащихся общеобразовательных учреждений / [ А. Г. Мордкович и др.] ; под ред. А. Г. Мордковича. – М.: Мнемозина, 2013.
Мордкович А. Г. Алгебра. 8 класс : метод. пособие для учителя / А. Г. Мордкович. - М.: Мнемозина, 2010.
Александрова Л. А. Алгебра. 8 класс: самостоятельные работы / Л. А. Александрова; под ред. А. Г. Мордковича. - М.: Мнемозина, 2011.
Александрова Л. А. Алгебра. 8 класс: контрольные работы / Л. А. Александрова; под ред. А. Г. Мордковича. - М.: Мнемозина, 2011.
Атанасян Л.С, Бутузов В.Ф., Кадомцев СБ.,Лозняк Э.Г., Юдина И.И.Геометрия. 7—9 классы: Учебник для общеобразовательных учреждений. - М.: Просвещение, 2010.
Атанасян Л.С, Бутузов В.Ф., Глазков Ю.А., Юдина И. И. Геометрия: Рабочая тетрадь для 8 класса. - М.: Просвещение, 2010.
Зив Б.Г., Мейлер В.М., Баханский В.Ф. Задачи по геометрии для 7—11 классов. - М.: Просвещение, 2010.
Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 8 класса. - М.: Просвещение, 2010.
АтанасянЛ.С, Бутузов В.Ф., Глазков Ю.А., Некрасов В.Б., Юдина И.И. Изучение геометрии в 7—9 классах: Методические рекомендации к учебнику. Книга для учителя. - М.: Просвещение, 2009.
НОРМЫ ОЦЕНОК ЗНАНИЙ УЧАЩИХСЯ
1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах, графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
допущено более одной ошибки или более двух - трех недочетов в выкладках, чертежах графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнен им каких-либо других заданий.
2.0ценка устных ответов обучающихся по математике.
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность, устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя,
возможны одна-две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», при этом имеет один из недостатков:
изложении допущены небольшие пробелы не исказившее математическое содержание ответа;
допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.
3. Общая классификация ошибок.
При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и негрубые) недочёты.
3.1. Грубыми считаются ошибки:
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
незнание наименований единиц измерения;
неумение выделить в ответе главное;
неумение применять знания, алгоритмы для решения задач;
неумение делать выводы и обобщения;
неумение читать и строить графики;
неумение пользоваться первоисточниками, учебником и справочниками; потеря корня или сохранение постороннего корня;
отбрасывание без объяснений одного из них;
равнозначные им ошибки;
вычислительные ошибки, если они не являются опиской; логические ошибки.
3.2. К негрубым ошибкам следует отнести:
неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
неточность графика;
нерациональный метод решения задачи. или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
нерациональные методы работы со справочной и другой литературой;
неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
нерациональные приемы вычислений и преобразований;
небрежное выполнение записей, чертежей, схем, графиков.
Список литературы
Дудницын Ю.П. Алгебра. 8 кл.: Контрольные работы для общеобразоват.учреждений. Учебное пособие / Ю.П.Дудницын, Е.Е.Тульчинская; под ред. А.Г.Мордковича. – М.:Мнемозина, 2005.
Тесты по алгебре: 8 класс: к учебнику А.Г.Мордковича «Алгебра. 8 класс» / Е.М.Ключникова, И.В. Комиссарова. – М.:Издательство «Экзамен», 2011.
Тульчинская Е.Е. Алгебра. 8 класс. Блицопрос: пособие для учащихся общеобразоват.учреждений / Е.Е.Тульчинская. – М.:Мнемозина,2009.
Александрова Л.А. Алгебра. 8 класс. Тематические проверочные работы в новой форме для учащихся общеобразоват. учреждений. / Л.А.Александрова; под ред.А.Г.Мордковича. – М.: Мнемозина, 2012.
Единая коллекция ЦОР: www.school-collection.edu.ru , www.fcor.ru
Тестирование online: 5–11 классы: http://www.kokch.kts.ru/cdo
Педагогическая мастерская, уроки в Интернет и многое другое: http://teacher.fio.ru
Новые технологии в образовании:http://edu.secna.ru/main
Звавич Л.И. Новые контрольные и проверочные работы по геометрии. 7—9 классы. - М.: Дрофа, 2002.
10. Гаврилова Н.Ф. Поурочные разработки по геометрии. 8 класс. -М.: ВАКО, 2010.
11. Кукарцева Г. И. Сборник задач по геометрии в рисунках и тестах.- М.: Аквариум ГИППВ, 1998.
12. Атанасян Л.С, Бутузов В.Ф., Кадомцев СБ.и др. Геометрия, дополнительные главы к учебнику 8 класса: Учебное пособие для учащихся школ и классов с углубленным изучением математики.- М.: Вита-Пресс, 2002.
Алтынов П.И. Геометрия, 7—9 классы. Тесты: Учебно-методическое пособие. - М.: Дрофа, 2000.
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/312882-rabochaja-programma-po-matematike-dlja-8-klas
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Профилактика и коррекция девиантного поведения»
- «Особенности разработки и реализации рабочих программ внеурочной деятельности в соответствии с ФГОС»
- «Специфика работы с детьми-мигрантами дошкольного возраста»
- «Современные подходы к преподаванию русского языка в условиях реализации ФГОС ООО»
- «Содержание и методы обучения математике по ФГОС ООО от 2021 года»
- «Развитие мотивации учебной деятельности обучающихся в образовательном процессе»
- Деятельность няни в рамках социального обслуживания населения: теоретические и практические основы
- Физика и астрономия: теория и методика преподавания в образовательной организации
- Изобразительное искусство и педагогическая деятельность в образовательных организациях
- География: теория и методика преподавания в образовательной организации
- Педагогическое образование: теория и методика преподавания истории в образовательных организациях
- Педагогическое образование: педагогика и методика преподавания химии в образовательной организации

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.