Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
10.01.2019

Рабочая программа курса геометрии для 7 9 класса

Чиглинцева Елена Владимировна
Учитель математики и информатики
Рабочая программа по геометрии 7-9 класса для основной общеобразовательной школы составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования второго поколения, на основе примерной Программы основного общего образования по математике, Программы по геометрии для 7-9 классов общеобразовательных школ к учебнику Л.С. Атанасяна и др. (М.:Просвещение,2013). В ней также учитываются основные идеи и положения.
Базисный учебный (образовательный) план на изучение геометрии в 7 классе основной школы отводит 2 часа в неделю, всего 68 уроков; в 8 классе отводит 2 часа в неделю, всего 68 уроков; в 9 классе отводит 2 часа в неделю, всего 66 уроков.

Содержимое разработки

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по геометрии 7-9 класса для основной общеобразовательной школы составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования второго поколения, на основе примерной Программы основного общего образования по математике, Программы по геометрии для 7-9 классов общеобразовательных школ к учебнику Л.С. Атанасяна и др. (М.:Просвещение,2013). В ней также учитываются основные идеи и положения.

Сознательное овладение учащимися системой геометрических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса геометрии обусловлена тем, что ее объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С ее помощью моделируются и изучаются явления и процессы, происходящие в природе.

Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников. Умение анализировать текст, извлекать из него необходимую информацию, строить доказательную базу, опираясь на факты, строго и последовательно излагать аргументы, приобретаемые учащимися в процессе изучения геометрии, помогают учащимся при написании сочинений, при изучении и изложении знаний по всем предметам школьного курса и при общении в повседневной жизни.

Развитие у учащихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей ее выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и емко, приобрести навыки четкого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить четкие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников.

Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание учащихся. Ее изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления.

ЦЕЛИ И ЗАДАЧИ ОБУЧЕНИЯ

Обучение математике в основной школе направлено на достижение следующих целей:

В направлении личностного развития:

развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

развитие интереса к математическому творчеству и математических способностей.

В метапредметном направлении:

формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

В предметном направлении:

овладение математическими знаниями и умениями, необходимые для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

создания фундамента для развития математических способностей и механизмов мышления, формируемых математической деятельностью.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

В направлении личностного развития:

формирование ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;

формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

креативность мышления, инициатива, находчивость, активность при решении геометрических задач;

умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

В метапредметном направлении:

умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;

осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

умение устанавливать причинно-следственные связи; строить логическое рассуждение, делать умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;

формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

В предметном направлении:

умение работать с геометрическим текстом (структурировать, анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификации, логические обоснования, доказательства математических утверждений;

умение применять аппарат алгебры при решении задач геометрического характера;

овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

овладение навыками устных, письменных, инструментальных вычислений;

овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов. для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера;

умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента.

ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА

В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Логика и множества», «Геометрия в историческом развитии».

Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии) способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических.

Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ ГЕОМЕТРИЯ 7-9 КЛАСС

Базисный учебный (образовательный) план на изучение геометрии в 7 классе основной школы отводит 2 часа в неделю, всего 68 уроков; в 8 классе отводит 2 часа в неделю, всего 68 уроков; в 9 классе отводит 2 часа в неделю, всего 66 уроков

ТЕМАТИЧЕСКОЕ СОДЕРЖАНИЕ КУРСА ГЕОМЕТРИИ

в 7 классе

Начальные геометрические сведения (11 часов)

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся, путем обобщения очевидных или известных из курса математики 1 – 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Хотя учителю есть смысл провести общую беседу о аксиоматике, опытным путем подвести учащихся к формированию аксиомы: «Через две точки на плоскости можно провести прямую и при том только одну». Остальные необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Треугольники(18 часов)

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач – на построение с помощью циркуля и линейки.

Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников – обоснование их равенства с помощью какого-то признака – следствия, вытекающие из равенства треугольников.

Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.

Параллельные прямые (13 часов)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Цель: ввести одно из важнейших понятий – понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрестлежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

Соотношения между сторонами и углами треугольника (20 часов)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Цель: рассмотреть новые интересные и важные свойства треугольников.

В данной теме доказывается одна из важнейших теорем геометрии – теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.

При решении задач на построение следует обратить внимание учащихся на отличие алгоритма решения таких задач от задач, решаемых ими ранее при изучении математики, алгебры, геометрии, а также при изучении других предметов школьного курса – при решении задач на построение необходимо выполнить анализ, исследование, доказательство, и только потом можно переходить к построению и описанию построения. Однако, при решении задач на построение в 7 классе анализ, исследование и доказательство можно выполнить устно, а при записи ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести анализ и доказательство, а элементы исследования могут присутствовать лишь тогда, когда это оговорено условием задачи.

Повторение. Решение задач (6 часов)

Начальные геометрические сведения. Признаки равенства треугольников. Равнобедренный треугольник. Параллельные прямые. Свойства параллельных прямых Признаки параллельных прямых Аксиома параллельных прямых Сумма углов треугольника Соотношения между сторонами и углами треугольника. Задачи на построение. Прямоугольные треугольники.

Цель:Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

В РЕЗУЛЬТАТЕ ИЗУЧЕНИЯ КУРСА ГЕОМЕТРИИ 7 КЛАССА ОБУЧАЮЩИЕСЯ ДОЛЖНЫ

овладеть следующими понятиями:

угол, луч, прямая, отрезок;

треугольник и его виды;

медиана, биссектриса, высота;

признаки равенства треугольников;

признаки параллельных прямых;

свойства параллельных прямых;

аксиомы параллельных прямых;

соотношения между сторонами и углами треугольника;

неравенство треугольника;

свойства прямоугольного треугольника;

расстояние между параллельными прямыми;

построение треугольника по трем элементам;

окружность

знать и уметь:

формулировать изученные определения, аксиомы, теоремы

доказывать изученные теоремы;

уметь проводить обоснования при решении задач, используя изученные сведения;

знать виды треугольников и их свойства, уметь применять эти положения при решении задач;

знать признаки равенства треугольника и уметь находить равные треугольники;

знать соотношения между сторонами и углами треугольника, уметь принимать эти положения при решении задач;

знать и уметь использовать для решения поставленной задачи определение параллельных прямых, свойства и признаки, связанные с пересечением прямых секущей

уметь строить треугольник по трем элементам;

знать понятие математического доказательства и уметь проводить его; знать и уметь приводить примеры доказательств;

знать понятие алгоритма и уметь строить алгоритмы и действовать по алгоритму; уметь приводить примеры алгоритмов;

знать, как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач, оперировать с понятиями больше на, больше в, меньше на, меньше в;

знать, каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

пользоваться языком геометрии для описания предметов окружающего мира и их взаимосвязи;

распознавать геометрические фигуры, различать их взаимное расположение;

изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

вычислять значения геометрических величин (длин, углов, площадей, объемов), находить стороны, углы треугольников, длины ломаных, дуг окружности, площади основных геометрических фигур и фигур, составленных из них;

решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

усвоить систематизированные сведения о плоских фигурах и основных геометрических отношениях;

осознать, что геометрические формы являются идеализированными образами реальных объектов; научиться использовать геометрический язык для описания предметов окружающего мира; получить представления о некоторых областях применения геометрии в быту, науке, технике, искусстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

описания реальных ситуаций на языке геометрии;

расчетов, включающих простейшие формулы;

решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

построений геометрическими инструментами (линейка, угольник, циркуль, транспортир)

Требования к уровню подготовки установлены Государственным стандартом основного общего образования в соответствии с обязательным минимумом содержания.

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека.

Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет начать работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления.

Изложение материала характеризуется постоянным обращением к наглядности. Использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к приемам из практики развивает умение учащихся выделять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый.

На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

ТЕМАТИЧЕСКОЕ СОДЕРЖАНИЕ КУРСА ГЕОМЕТРИИ

в 8 классе

Повторение (2 часа)

Четырехугольники ( 14 ч)

Многоугольники. Параллелограмм и трапеция. Прямоугольник. Ромб. Квадрат.

 Цельввести понятие многоугольника и выпуклого многоугольника, вывести формулу суммы углов выпуклого многоугольника и рассмотреть четырехугольник, как частный вид многоугольника; ввести понятия параллелограмма, трапеции, прямоугольника, ромба, квадрата и рассмотреть их свойства и признаки; осевую и центральную симметрии, как свойства некоторые геометрических фигур.

2. Площадь ( 14 ч)

Площадь многоугольника. Площади параллелограмма, треугольника и трапеции. Теорема Пифагора.

 Цельдать представление об измерении площадей многоугольников, рассмотреть основные свойства площадей и вывести формулу для вычисления площадей квадрата и прямоугольника; опираясь на основные свойства площадей и теорему о площади прямоугольника, вывести формулы для вычисления площадей параллелограмм, треугольника и трапеции; рассмотреть теорему об отношении площадей треугольников, имеющих по равному углу; сформулировать и доказать теорему Пифагора и обратную ей.

3. Подобные треугольники ( 20 ч)

Определение подобных треугольников. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Соотношения между сторонами и углами прямоугольного треугольника.

 Цельввести понятие пропорциональных отрезков и дать определение подобных треугольников; рассмотреть и доказать три признака подобия треугольников, научить применять их при решении задач; показать применение подобия треугольников при доказательстве теорем и решении задач; познакомить с элементами тригонометрии, необходимыми для решения прямоугольных треугольников.

4. Окружность ( 16 ч)

Касательная к окружности. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружность.

 Цельрассмотреть различные случаи взаимного расположения прямой к окружности,ввести понятие касательной, рассмотреть ее свойства и признак, рассмотреть свойства отрезков касательных, проведенных из одной точки; ввести понятия градусной меры дуги окружности, центрального и вписанного углов, доказать теоремы об измерении вписанных углов и об отрезках пересекающихся хорд; рассмотреть свойства биссектрисы угла и серединного перпендикуляра к отрезку, доказать, что биссектрисы/серединные перпендикуляры/высоты треугольника пересекаются в одной точке; ввести понятия вписанной в многоугольник и описанной около многоугольника окружностей, доказать теоремы об окружности вписанной в треугольник и об окружности описанной около треугольника.

5. Повторение. Решение задач ( 2 ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 8 класса).

В РЕЗУЛЬТАТЕ ИЗУЧЕНИЯ КУРСА ГЕОМЕТРИИ 8 КЛАССА ОБУЧАЮЩИЕСЯ ДОЛЖНЫ

овладеть следующими понятиями:

периметр треугольника;

многоугольник, выпуклый многоугольник, его элементы;

осевая симметрия, центральная симметрия;

тригонометрическое тождество;

касательная;

вписанный и центральный угол;

биссектриса угла и серединный перпендикуляр к отрезку;

подобные треугольники;

синус, косинус и тангенс острого угла в прямоугольном треугольнике;

многоугольник и вписанная в него и описанная около него окружности;

вектор, равные и противоположные вектора;

знать и уметь

знать определения параллелограмма, трапеции, прямоугольника, ромба, квадрата формулировки их свойств и признаков;

знать определения симметричных точек и фигур, относительно прямой и точки.

уметь выводить формулу суммы углов выпуклого многоугольника;

уметь доказывать изученные теоремы и применять их для решения задач;

уметь делить отрезок на n равных частей с помощью циркуля и линейки;

уметь строить симметричные точки и распознавать фигуры, обладающие осевой и центральной симметрией.

знать основные свойства площадей и формулу для вычисления площади прямоугольника;

знать формулы для вычисления площадей параллелограмм, треугольника и трапеции;

знать теорему об отношении площадей треугольников, имеющих по равному углу;

знать теорему Пифагора и обратную ей.

уметь формулу для вычисления площади прямоугольника и использовать ее свойства и свойства площадей при решении задач;

уметь доказывать теорему об отношении площадей треугольников, имеющих по равному углу;

уметь доказывать теорему Пифагора и обратную ей.

знать определения пропорциональных отрезков и подобных треугольников;

знать теорему об отношении площадей подобных треугольников и свойства биссектрисы треугольника;

знать признаки подобия треугольников;

знать теоремы о средней линии треугольника, точки пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике;

знать определения sin,cos, tg острого угла прямоугольного треугольника;

знать значения sin, cos,tg для углов 300, 450, 600, 900, 1800.

уметь доказывать теорему об отношении площадей подобных треугольников и свойство биссектрисы треугольника;

уметь доказывать признаки подобия треугольников и применять их при решении задач;

уметь доказывать теоремы о средней линии треугольника, точки пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике и применять при решении задач;

уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение;

уметь доказывать основное тригонометрическое тождество.

знать возможныеслучаи взаимного расположения прямой и окружности;

знать свойство и признак касательной;

знать как определяется градусная мера дуги окружности;

знать теорему о вписанном угле и следствия из нее;

знать теорему о произведении отрезков пересекающихся хорд;

знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

знать теоремы о пересечении высот/биссектрис/серединных перпендикуляров треугольника;

знать какая окружность называется вписанной в многоугольник, какая описанной около него;

знать теоремы об окружности вписанной и описанной около многоугольника.

уметь доказывать возможныеслучаи взаимного расположения прямой и окружности, свойство и признак касательной;

уметь доказывать теорему о вписанном угле и следствия из нее и теорему о произведении отрезков пересекающихся хорд, применять их при решении задач;

уметь доказывать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

уметь доказывать теоремы о пересечении высот/биссектрис/серединных перпендикуляров треугольника;

уметь доказывать теоремы об окружности вписанной в многоугольник;

уметь доказывать теоремы об окружности описанной около многоугольника.

ТЕМАТИЧЕСКОЕ СОДЕРЖАНИЕ КУРСА ГЕОМЕТРИИ

в 9 классе

Векторы ( ч)

Понятие вектора. Сложение и вычитание векторов. Умножение вектора на число. Применение векторов при решении задач.

 Цельввести понятия вектора, его длины, коллинеарных и равных векторов, научить изображать и обозначать векторы, откладывать от любой точки плоскости вектор, равный данному; ввести понятия суммы и разности двух векторов, рассмотреть законы сложения векторов и на их основе ввести понятие суммы трех и более векторов, научить строить сумму векторов, используя правило треугольника и параллелограмма, строить разность векторов двумя способами; ввести действие умножения вектора на число и его свойства.

Метод координат ( ч)

Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой.

 Цельввести понятие координат вектора и рассмотреть правила действий над векторами с заданными координатами; рассмотреть простейшие задачи в координатах и показать, как они используются при решении более сложных задач методом координат; вывести уравнения окружности и прямой, показать, как можно использовать эти уравнения при решении геометрических задач.

3. Соотношения между сторонами и углами треугольника ( ч)

Синус, косинус, тангенс угла. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

 Цельввести понятия синуса, косинуса, тангенса вывести формулы для вычисления координат точки; доказать теорему о площади треугольника, теоремы синусов, косинусов, познакомить с методами решения треугольников; познакомить со скалярным произведением векторов, его свойствами.

3. Длина окружности и площадь круга ( ч)

Правильные многоугольники. Длина окружности и площадь круга.

 Цельввести понятие правильного многоугольника, доказать теоремы об окружностях описанной около правильного многоугольника и вписанной в него, вывести формулы, связывающие площадь и сторону правильного многоугольника с радиусами вписанной и описанной окружностей, рассмотреть задачи на построение правильных многоугольников; дать представление о выводе формул длины окружности и площади круга, вывести формулы длины окружности и площади кругового сектора.

4. Движения ( ч)

Понятие движения. Параллельный перенос и поворот.

 Цельввести понятия отображения плоскости на себя и движения, рассмотреть осевую и центральную симметрии, некоторые свойства движений; познакомить с параллельным переносом и поворотом.

5. Начальные сведения из стереометрии ( ч)

Многогранники. Тела и поверхности вращения.

 Цельввести понятия геометрического тела, поверхности, границы тела, секущей плоскости и сечения тела; ввести понятие многогранника, его видов и элементов; ввести понятие призмы, ее видов и свойств; ввести понятие параллелепипеда, его свойств; ввести понятие объема тела, рассмотреть основные свойства объемов, принцип Кавальери; ввести понятие пирамиды, ее видов и свойств; рассмотреть тела вращения, вывести формулы для вычисления площади поверхности и объемов тел вращения.

6. Повторение. Решение задач ( ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 9 класса).

В РЕЗУЛЬТАТЕ ИЗУЧЕНИЯ КУРСА ГЕОМЕТРИИ 9 КЛАССА ОБУЧАЮЩИЕСЯ ДОЛЖНЫ

овладеть следующими понятиями:

определения вектора и равных векторов;

закон сложения векторов;

определение разности векторов, какой вектор называется противоположным данному;

какой вектор называется произведение вектора на число;

уметь изображать и обозначать векторы;

уметь откладывать от любой точки плоскости вектор, равный данному;

уметь строить сумму векторов используя правила треугольника, параллелограмма, многоугольника;

уметь строить разность векторов двумя способами;

уметь формулировать свойства умножения вектора на число;

уметь формулировать и доказывать теорему о средней линии трапеции.

коллинеарные векторы;

правильный многоугольник;

параллельный перенос и поворот;

геометрическое тело, поверхность, границы тела;

секущая плоскости, сечения тела;

многогранник, призма, параллелепипед, пирамида, цилиндр, конус, шар и сфера;

объем тела, принцип Кавальери;

знать и уметь

сформулировать и доказать леммы о коллинеарных векторах;

знать теорему о разложении вектора по двум неколлинеарным векторам;

знать правила действий над векторами с заданными координатами;

знать формулы координат вектора через координаты его конца и начала;

формулы координат середины отрезка, длины вектора и расстояния между двумя точками;

уравнения окружности и прямой;

решать задачи с использованием теоремы о разложении вектора по двум неколлинеарным векторам и правил действий над векторами с заданными координатами;

выводить формулы координат вектора через координаты его конца и начала;

выводить формулы координат середины отрезка, длины вектора и расстояния между двумя точками;

выводить уравнения окружности и прямой;

строить окружности и прямые заданные уравнениями;

выводят синуса, косинуса, тангенса для углов от 00 до 1800;

формулы для вычисления координат точки;

теорему о площади треугольника;

теоремы синусов, косинусов;

определение скалярного произведения векторов;

условие перпендикулярности ненулевых векторов;

выражение скалярного произведения в координатах и его свойства;

доказывать основное тригонометрическое тождество;

доказывать теорему о площади треугольника;

доказывать теоремы синусов, косинусов;

объяснить, что такое угол между векторами;

теоремы об окружностях описанной около правильного многоугольника и вписанной в него;

формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности;

формулы длины и дуги окружности, площади круга и кругового сектора.

доказывать теоремы об окружностях описанной около правильного многоугольника и вписанной в него;

выводить формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности;

применять формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности, формулы длины и дуги окружности, площади круга и кругового сектора при решении задач.

определение движения плоскости.

объяснить, что такое отображение плоскости на себя;

доказывать, что осевая и центральная симметрия являются движениями и, что при движении отрезок отображается на отрезок, а треугольник – на равный ему треугольник;

доказывать, что параллельный перенос и поворот являются движениями плоскости.

знать формулы для вычисления площадей поверхности и объемов многогранников и тел вращения.

различать и называть свойства отдельных видов многогранников и тел вращения;

применять при решении задач формулы для вычисления площадей поверхности и объемов многогранников и тел вращения.

НОРМЫ ОЦЕНКИ ЗНАНИЙ ,УМЕНИЙ И КОМПЕТЕНТНОСТЕЙ УЧАЩИХСЯ 7-9 КЛАССОВ ПО ГЕОМЕТРИИ

Основным способом контроля качества усвоения программного материала является письменная контрольная работа. Контрольные работы составляются с учетом обязательных результатов обучения. Кроме контрольной работы также применяются другие способы проверки знаний, умений и навыков учащихся в виде срезовых и административных контрольных работ, самостоятельных письменных работ, тестирования, математического диктанта и фронтального контрольного опроса.

Опираясь на следующие рекомендации, учитель оценивает знания и умения учащихся с учетом их индивидуальных особенностей.

Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.

Основными формами проверки знаний и умений учащихся по математике являются письменная контрольная работа и устный опрос.

При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных учащимися.

3. Среди погрешностей выделяются ошибки и недочёты. Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.

К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, не считающихся в программе основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.

Граница между ошибками и недочетами является в некоторой степени условной. При одних обстоятельствах допущенная учащимися погрешность может рассматриваться учителем как ошибка, в другое время и при других обстоятельствах — как недочет.

4.Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты я обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само­ решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им заданий.

1. Оценка письменных контрольных работ.

Ответ оценивается отметкой «5», если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок;

в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов.

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

отвечал самостоятельно, без наводящих вопросов учителя;

возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

не раскрыто основное содержание учебного материала;

обнаружено незнание учеником большей или наиболее важной части учебного материала;

допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

незнание наименований единиц измерения;

неумение выделить в ответе главное;

неумение применять знания, алгоритмы для решения задач;

неумение делать выводы и обобщения;

неумение читать и строить графики;

неумение пользоваться первоисточниками, учебником и справочниками;

потеря корня или сохранение постороннего корня;

отбрасывание без объяснений одного из них;

равнозначные им ошибки;

вычислительные ошибки, если они не являются опиской;

логические ошибки.

3.2. К негрубым ошибкам следует отнести:

неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

неточность графика;

нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

нерациональные методы работы со справочной и другой литературой;

неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

нерациональные приемы вычислений и преобразований;

небрежное выполнение записей, чертежей, схем, графиков.

ЛИТЕРАТУРА

Учебно-методический комплекс

Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089)

Геометрия. Рабочая программа к учебнику Л.С. Атанасяна и других. 7-9 классы: пособие для учителей общеобразов. учреждений / В.Ф. Бутузов. – М: Просвещение, 2015

Примерные программы по учебным предметам. Математика. 5-9 классы: проект. – 3-е изд. – М: Просвещение, 2011 (Стандарты второго поколения)

Геометрия, 7-9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов и др. – М.: Просвещение, 2013;

Геометрия. 7-11 классы: развернутое тематическое планирование. Базовый уровень. Линия Л.С. Атанасяна / авт.-сост. Т.А. Саталова. – Изд. 2-е, испр. – Волгоград: Учитель, 2010

Геометрия. 7 класс: поурочные планы по учебнику Л.С. Атанасяна [и др.] «Геометрия 7-9 классы» / авт.-сост. Т.Л. Афанасьефа, Л.А. Тапилина. – 2-е изд. Волгоград: Учитель, 2011

Изучение геометрии в 7, 8, 9 классах: Метод. Рекомендации к учеб. Кн. для учителя / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др. – 6-е изд. – М.: Просвещение, 2003

Геометрия. 7-9 классы: тесты для текущего и обобщающего контроля \ авт.-ссот. Г.И. Ковалева, Н.И. Мазурова. – Волгоград: Учитель, 2008

Рабочая тетрадь по геометрии: к учебнику Л.С. Атанасяна и др. «Геометрия. 7-9 класс» (издательство «Просвещение»): 7-й кл. / Л.С. Атанасян. – М.: Просвещение, 2014;

Геометрия 7 класс: контрольные измерительные материалы / А.Р. Рязановский, Д.Г. Мухин.-М.:Экзамен,2014;

Сборник задач по геометрии: 7 класс / В.А. Гусев.- М.:Экзамен,2013;

Геометрия. Дидактические материалы. 7 класс / Б.Г. Зив, В.М. Мейер.-М.: Просвещение, 2012;

Карпушина Н.М. Развивающие задачи по геометрии. 7 класс. – М.: Школьная пресса, 2004 («Библиотека журнала «Математика в школе»)

Ершова А.П., Голобородько В.В., Ершова А.С. Самостоятельные и контрольные работы по алгебре и геометрии для 7 класса. – 7-е изд., испр. и доп. – М: Илекса, 2008

Тематический контроль по геометрии. 7 класс. Учебное пособие / Мельникова Н.Б. – Москва: «Интеллект-Центр», 2013

Геометрия: задачи на готовых чертежах: 7-9 классы / Э.Н. Балаян. – Ростов н/Д: Феникс, 2009

Интернет-ресурсы

Министерство образования РФ: http://www.informika.ru/; http://www.ed.gov.ru/; http://www.edu.ru/

Тестирование online: 5 - 11 классы: http://www.kokch.kts.ru/cdo/

Педагогическая мастерская, уроки в Интернет и многое другое: http://teacher.fio.ru

Новые технологии в образовании: http://edu.secna.ru/main/

Путеводитель «В мире науки» для школьников: http://www.uic.ssu.samara.ru/~nauka/

Мегаэнциклопедия Кирилла и Мефодия: http://mega.km.ru двенадцать

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/341061-rabochaja-programma-kursa-geometrii-dlja-79-

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

Комментарии
Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией , абстрагирование м, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников. При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки