Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
31.10.2019

Рабочая программа по алгебре для 7 9 классов автора мордкович а. г

Рабочая программа по алгебре для 7 – 9 классов (базовый уровень) составлена на основе Федерального компонента государственного образовательного стандарта ООО с учетом авторской программы по алгебре 7 – 9 классов Мордкович А.Г. и др.

Содержимое разработки

РАБОЧАЯ ПРОГРАММА

ПО АЛГЕБРЕ ДЛЯ 7– 9 КЛАССОВ

I. СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

1. Пояснительная записка

Рабочая программа по алгебре для 7 – 9 классов (базовый уровень) составлена на основе Федерального компонента государственного образовательного стандарта ООО с учетом авторской программы по алгебре 7 – 9 классов Мордкович А.Г. и др.

Нормативное обеспечение:

- Закон 273-ФЗ «Об образовании в РФ» ст.2 п.9,10; ст. 28 п.3.6; ст. 47 п.3.3; ст. 48;

- Приказ Министерства образования и науки РФ от17декабря 2010 г. №1897 (редакция от 31.12.2015) «Об утверждении федеральных государственных образовательных стандартов основного общего образования»;

-ООП ООО МАОУ СШ № 143.

Математическое образование является обязательной и не­отъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

в направлении личностного развития:

формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

развитие интереса к математическому творчеству и математических способностей;

в метапредметном направлении:

развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

в предметном направлении:

овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Целью изучения курса алгебры в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.

В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.Предлагаемый курс позволяет обеспечить формирование как предметныхумений,так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

2. Общая характеристика учебного курса

Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и обще­культурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую ли­нию, пронизывающую все основные разделы содержания ма­тематического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для даль­нейшего изучения учащимися математики, способствует разви­тию их логического мышления, формированию умения поль­зоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие поня­тия о числе в основной школе связано с рациональными и ир­рациональными числами, формированием первичных пред­ставлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирова­ние у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружа­ющей реальности. Язык алгебры подчеркивает значение мате­матики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразова­ние символьных форм вносит специфический вклад в разви­тие воображения учащихся, их способностей к математическо­му творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с ир­рациональными выражениями, с тригонометрическими функ­циями и преобразованиями, входят в содержание курса мате­матики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разно­образных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вно­сит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный ком­понент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамот­ности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, про­водить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том чис­ле в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его ис­следования, формируется понимание роли статистики как ис­точника социально значимой информации, и закладываются основы вероятностного мышления.

Особенностью раздела «Логика» является то, что представленный в нем материал преимущественно изуча­ется и используется в ходе рассмотрения различных вопросов курса. Соответствующий материал наце­лен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназна­чен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролиру­ется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рас­смотрении проблематики основного содержания математичес­кого образования

Описание места учебного предмета «Алгебра» в учебном плане

На изучение математики в основной школе отводится 3/4 учебных часов в не­делю в течение каждого года обучения.

Классы

Предмет математического цикла

Количество часов на ступени основного образования

7 - 9

Алгебра

306/408

Требования к результатам обучения и освоения содержания курса

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего об­разования:

личностные:

ответственного отношения к учению, готовности и спо­собности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

формирования коммуникативной компетентности в об­щении и сотрудничестве со сверстниками, старшими и млад­шими в образовательной, учебно-исследовательской, творче­ской и других видах деятельности;

умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

креативности мышления, инициативы, находчивости, активности при решении арифметических задач;

умения контролировать процесс и результат учебной ма­тематической деятельности;

формирования способности к эмоциональному вос­приятию математических объектов, задач, решений, рассуж­дений;

метапредметные:

способности самостоятельно планировать альтернатив­ные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

умения осуществлять контроль по образцу и вносить не­обходимые коррективы;

способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктив­ные, дедуктивные и по аналогии) и выводы;

умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

развития способности организовывать учебное сотруд­ничество и совместную деятельность с учителем и сверстни­ками: определять цели, распределять функции и роли участ­ников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разре­шать конфликты на основе согласования позиций и учёта ин­тересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

формирования учебной и общепользовательской компе­тентности в области использования информационно-комму­никационных технологий (ИКТ-компетентности);

первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;

развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;

умения находить в различных источниках информа­цию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

умения понимать и использовать математические сред­ства наглядности (рисунки, чертежи, схемы и др.) для иллю­страции, интерпретации, аргументации;

умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным ал­горитмом;

умения самостоятельно ставить цели, выбирать и соз­давать алгоритмы для решения учебных математических про­блем;

способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные:

1) умения работать с математическим текстом (структу­рирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, ис­пользовать различные языки математики (словесный, симво­лический, графический), развития способности обосновывать суждения, проводить классификацию;

владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных гео­метрических объектах (точка, прямая, ломаная, угол, мно­гоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических за­кономерностях в реальном мире и различных способах их изучения;

умения выполнять арифметические преобразования ра­циональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учеб­ных предметах;

умения пользоваться изученными математическими формулами;

знания основных способов представления и анализа ста­тистических данных; умения решать задачи с помощью пере­бора всех возможных вариантов;

умения применять изученные понятия, результаты и ме­тоды при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

Содержание курса алгебры в 7-9 классах

Числа

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами.Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Иррациональность числа .Сравнение иррациональных чисел.Множество действительных чисел.

Тождественные преобразования

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения

Степень с натуральным показателем и её свойства. Законы арифметических действий. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращённого умножения: разность квадратов, квадрат суммы и разности.. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращённого умножения. Квадратный трёхчлен, разложение квадратного трёхчлена на множители.

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление.Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях.Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.

Квадратные корни

Действия с квадратными корнями: умножение, деление корней, вынесение множителя за знак корня.

Уравнения и неравенства

Равенства

Числовое равенство.Свойства числовых равенств. Равенство с переменной. Левая и правая части равенства.

Уравнения

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения.

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Квадратное уравнение и его корни

Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Решение квадратных уравнений: использование формулы, графический метод решения, разложение на множители, подбор с использованием теоремы Виета.Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: метод равносильных преобразования, метод разложения на множители, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения ,.

Уравнения вида.

Уравнения в целых числах.

Системы уравнений

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение систем уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Левая и правая части неравенства, строгие и нестрогие неравенства. Область определения неравенства.

Решение линейных неравенств.

Квадратное неравенство и его решения.Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Линейные неравенства с параметром.

Системы неравенств

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных,квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

Функции

Понятие функции

Декартовы координаты на плоскости. Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, чётность/нечётность, промежутки возрастания и убывания, наибольшее и наименьшее значение. Исследование функции по её графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства линейной функции, её график. Угловой коэффициент прямой. Положение графика линейной функции в зависимости от её коэффициентов.Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция

Свойства, её график. Парабола. Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции,множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции . Гипербола.

Графики функций.Преобразование графика функции для построения графиков функций .

Графики функций,,,.

Последовательности и прогрессии

Числовая последовательность. Примеры. Бесконечные последовательности. Арифметическая прогрессия и её свойства. Геометрическая прогрессия. Сходящаяся геометрическая прогрессия. Решение задач.

Решение текстовых задач

Задачи на все арифметические действия

Решение простых задач и задач повышенной трудности. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

План и этапы решения задачи. Анализ решения. Проверка решения, проверка обратным действием.

Задачи на движение и работу

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объёмов выполняемых работ при совместной работе.

Решение задач на нахождение части числа и числа по его части.

Решение задач на проценты, применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения задач: арифметический, алгебраический, перебор вариантов.Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Статистика

Табличное и графическое представление данных, столбиковые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения . Меры рассеивания: размах, дисперсия и стандартное отклонение. Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Случайные опыты и случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков.Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор.Представление эксперимента в виде дерева, умножение вероятностей. Независимые события. Последовательные независимые испытания. Роль независимых событий в жизни, в частности – в технике.

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

II. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА АЛГЕБРЫ В 7—9 КЛАССАХ

Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне):

Элементы теории множеств и математической логики

Оперировать на базовом уровне1 понятиями: множество, элемент множества, подмножество, принадлежность;

задавать множества перечислением их элементов;

находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа

Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, арифметический квадратный корень;

использовать свойства чисел и правила действий при выполнении вычислений;

использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

выполнять округление рациональных чисел в соответствии с правилами;

оценивать значение квадратного корня из положительного целого числа;

распознавать рациональные и иррациональные числа;

сравнивать числа.

В повседневной жизни и при изучении других предметов:

оценивать результаты вычислений при решении практических задач;

выполнять сравнение чисел в реальных ситуациях;

составлять числовые выражения при решении практических задач и задач из других учебных предметов

Тождественные преобразования

Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

выполнять несложные преобразования дробно-линейных выражений.

В повседневной жизни и при изучении других предметов:

понимать смысл числа, записанного в стандартном виде;

оперировать на базовом уровне понятием «стандартная запись числа»

Уравнения и неравенства

Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

проверять справедливость числовых равенств и неравенств;

решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

решать системы несложных линейных уравнений, неравенств;

проверять, является ли данное число решением уравнения (неравенства);

решать квадратные уравнения одним из способов;

изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах

Функции

находить значение функции по заданному значению аргумента;

находить значение аргумента по заданному значению функции в несложных ситуациях;

определять положение точки по её координатам, координаты точки по её положению на плоскости;

по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значение функции;

строить график линейной функции;

проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

примерно определять координаты точки пересечения графиков функций;

оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчётом без применения формул.

В повседневной жизни и при изучении других предметов:

использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

использовать свойства линейной функции и ее график при решении задач из других учебных предметов

Статистика и теория вероятностей

Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

решать простейшие комбинаторные задачи методом прямого и организованного перебора;

представлять данные в виде таблиц, диаграмм, графиков;

читать информацию, представленную в виде таблицы, диаграммы, графика;

определятьосновные статистические характеристики числовых наборов;

оценивать вероятность события в простейших случаях;

иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

оценивать количество возможных вариантов методом перебора;

иметь представление о роли практически достоверных и маловероятных событий;

сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

оценивать вероятность реальных событий и явлений в несложных ситуациях

Текстовые задачи

Решать несложные сюжетные задачи разных типов на все арифметические действия;

строить схематический чертёж или другую краткую запись (таблица, схема, рисунок) как модель текста задачи, в которой даны значения тройки взаимосвязанных величин, с целью поиска решения задачи;

осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию, при поиске решения задач, или от требования к условию;

составлять план процесса решения задачи;

выделять этапы решения задачи;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

решать задачи на нахождение части числа и числа по его части;

решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

выдвигать гипотезы о возможных предельных значениях числового ответа задачи (делать прикидку)

История математики

Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

понимать роль математики в развитии России

Методы математики

Применять известные методы при решении стандартных математических задач;

замечать и характеризовать математические закономерности в окружающей действительности;

приводить примеры математических закономерностей в природе, в том числе характеризующих эстетику окружающего мира и произведений искусства

Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях:

Элементы теории множеств и математической логики

Оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

изображать множества и отношение множеств с помощью кругов Эйлера;

определять принадлежность элемента множеству, объединению и пересечению множеств;

задавать множество с помощью перечисления элементов, словесного описания;

оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

строить цепочки умозаключений на основе использования правил логики;

использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений

Числа

Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, квадратный корень, действительное число, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

понимать и объяснять смысл позиционной записи натурального числа;

выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;

использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения при выполнении вычислений и решении задач;

выполнять округление рациональных чисел с заданной точностью;

сравнивать рациональные и иррациональные числа;

упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

находить НОД и НОК и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

записывать и округлять числовые данные реальных величин с использованием разных систем измерения

Тождественные преобразования

Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

выделять квадрат суммы и разности одночленов;

раскладывать на множители квадратный трёхчлен;

выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

выполнять преобразования выражений, содержащих квадратные корни;

выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

выполнять преобразования и действия с числами, записанными в стандартном виде;

выполнять преобразования целых выражений при решении задач других учебных предметов

Уравнения и неравенства

Оперировать понятиями: уравнение, неравенство, решение уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

решать дробно-линейные уравнения;

решать простейшие иррациональные уравнения:, ;

решать уравнения вида ;

решать уравнения способом разложения на множители и замены переменной;

использовать метод интервалов для решения целых и дробно-рациональных неравенств;

решать линейные уравнения и неравенства с параметрами;

решать несложные квадратные уравнения с параметром;

решать несложные системы линейных уравнений с параметрами;

решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

составлять и решать линейные и квадратные уравнения и уравнения, к ним сводящиеся, системы линейных уравнений и неравенств при решении задач других учебных предметов;

выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

выбирать уравнения, неравенства или их системы, для составления математической модели заданной реальной ситуации или прикладной задачи;

уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи

Функции

Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, чётность/нечётность функции;

строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: ,,,;

на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;

составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

исследовать функцию по её графику;

находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

осуществлять выбор графика реальной зависимости или процесса по его характеристикам;

использовать свойства и график квадратичной функции при решении задач из других учебных предметов

Статистика и теория вероятностей

Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

извлекать, информацию, представленную в таблицах, на диаграммах, графиках;

составлять таблицы, строить диаграммы и графики на основе данных;

оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

представлять информацию с помощью кругов Эйлера;

решать задачи на вычисление вероятности с подсчетом количества вариантов по формулам комбинаторики.

В повседневной жизни и при изучении других предметов:

извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

оценивать вероятность реальных событий и явлений.

Текстовые задачи

Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

моделировать рассуждения при поиске решения задач с помощью граф-схемы;

выделять этапы решения задачи и содержание каждого этапа;

уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

анализировать затруднения при решении задач;

выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

решать разнообразные задачи «на части»,

решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

владеть основными методами решения задач на смеси, сплавы, концентрации;

решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

решать несложные задачи по математической статистике;

овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

решать задачи на движение по реке, рассматривая разные системы отсчета

История математики

Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

понимать роль математики в развитии России

Методы математики

Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

применять основные методы решения математических задач;

на основе математических закономерностей в природе, характеризовать эстетику окружающего мира и произведений искусства;

применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач

Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углублённом уровне:

Элементы теории множеств и математической логики

Свободно оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;

задавать множества разными способами;

проверять выполнение характеристического свойства множества;

свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний;, истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не. Условные высказывания (импликации);

строить высказывания с использованием законов алгебры высказываний.

В повседневной жизни и при изучении других предметов:

строить рассуждения на основе использования правил логики;

использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа

Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

переводить числа из одной системы записи (системы счисления) в другую;

доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения при выполнении вычислений и решении задач;

выполнять округление рациональных и иррациональных чисел с заданной точностью;

сравнивать действительные числа разными способами;

упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

находить НОД и НОК разными способами и использовать их при решении задач;

выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;

составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов

Тождественные преобразования

Свободно оперировать понятиями степени с целым и дробным показателем;

выполнять доказательство свойств степени с целыми и дробными показателями;

оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;

свободно владеть приемами преобразования целых и дробно-рациональных выражений;

выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приёмов;

использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трёхчлена и для решения задач, в том числе задач с параметрами на основе квадратного трёхчлена;

выполнять деление многочлена на многочлен с остатком;

доказывать свойства квадратных корней и корней степени n;

выполнять преобразования выражений, содержащих квадратные корни, корни степени n;

свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;

выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;

выполнять преобразования рациональных выражений при решении задач других учебных предметов;

выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей

Уравнения и неравенства

Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;

знать теорему Виета для уравнений степени выше второй;

понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

владеть разными методами доказательства неравенств;

решать уравнения в целых числах;

изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов

составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты

Функции

Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, чётность/нечётность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,

строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;

использовать преобразования графика функции для построения графиков функций ;

анализировать свойства функций и вид графика в зависимости от параметров;

свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;

использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;

исследовать последовательности, заданные рекуррентно;

решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;

использовать графики зависимостей для исследования реальных процессов и явлений;

конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета

Статистика и теория вероятностей

Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

выбирать наиболее удобный способ представления информации, адекватный её свойствам и целям анализа;

вычислять числовые характеристики выборки;

свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;

свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

знать примеры случайных величин, и вычислять их статистические характеристики;

использовать формулы комбинаторики при решении комбинаторных задач;

решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

представлять информацию о реальных процессах и явлениях способом, адекватным её свойствам и цели исследования;

анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;

оценивать вероятность реальных событий и явлений в различных ситуациях

Текстовые задачи

Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;

распознавать разные виды и типы задач;

использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;

различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;

знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);

моделировать рассуждения при поиске решения задач с помощью граф-схемы;

выделять этапы решения задачи и содержание каждого этапа;

уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

анализировать затруднения при решении задач;

выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;

анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние).при решение задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;

исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

решать разнообразные задачи «на части»;

решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;

решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

решать несложные задачи по математической статистике;

овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

конструировать новые для данной задачи задачные ситуации с учётом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

решать задачи на движение по реке, рассматривая разные системы отсчёта;

конструировать задачные ситуации, приближенные к реальной действительности

История математики

Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;

рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России

Методы математики

Владеть знаниями о различных методах обоснования математических утверждений и самостоятельно применять их;

владеть типологией задач и пользоваться этой типологией при выборе метода решения;

характеризовать произведения искусства с учётом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.

III. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Тематическое планирование представлено в двух вариантах. Первый вариант составлен из расчёта 3 часа в неделю, (102 часа за каждый год обучения).При работе по второму варианту тематического планирования на изучение алгебры отводится 4 часов в неделю.(136 часов за каждый год обучения).

УМК автор А. Г. Мордкович

7 класс

Разделы учебника

Основные виды учебной деятельности учащихся

Число кр

Кол-во часов

3 часа в неделю

4 часа в неделю

Глава 1. Математический язык. Математическая модель

Контрольная работа - №1

1

13ч

17 ч

Глава 2. Линейная функция

Контрольная работа – №2

1

13ч

18 ч

Глава 3. Системы двух линейных уравнений с двумя переменными

Контрольная работа - № 3

1

12ч

16 ч

Глава 4. Степень с натуральным показателем и её свойства

11 ч

Глава 5. Одночлены. Операции над одночленами

Контрольная работа - №4

1

11 ч

Глава 6. Многочлены. Операции над многочленами

Контрольная работа - № 5

1

15ч

19 ч

Глава 7. Разложение многочленов на множители

Контрольная работа - №6

1

16ч

21 ч

Глава 8. Функция y = x²

Контрольная работа - № 7

1

10ч

13 ч

Обобщающее повторение

Итоговая контрольная работа

1

10ч

Итого

8

102ч

136 ч

8 класс

Разделы учебника

Основные виды учебной деятельности учащихся

Число кр

Кол-во часов

3 часа в неделю

4 часа в неделю

Глава 1. Алгебраические дроби

Контрольная работа - №1

Контрольная работа - №2

2

21 ч

29 ч

Глава 2. Функция Свойства квадратного корня

Контрольная работа - №3

1

19 ч

25 ч

Глава 3. Квадратичная функция. Функция

Контрольная работа - №4

Контрольная работа – №5

2

17 ч

24 ч

Глава 4. Квадратные уравнения

Контрольная работа - №6

1

20 ч

24 ч

Глава 5. Неравенства

Контрольная работа – №7

1

16 ч

18 ч

Обобщающее повторение

Итоговая контрольная работа

1

9 ч

16 ч

Итого

8

102 ч

136 ч

9 класс

Разделы учебника

Основные виды учебной деятельности учащихся

Число кр

Кол-во часов

3 часа внеделю

4 часа в неделю

Глава 1. Рациональные неравенства и их системы

Контрольная работа - №1

1

14 ч

20 ч

Глава 2. Системы уравнений

Контрольная работа - №2

1

18 ч

20 ч

Глава 3. Числовые функции

Контрольная работа – №3

Контрольная работа – №4

Контрольная работа – №5

3

24 ч

31 ч

Глава 4. Прогрессии

Контрольная работа - №6

1

14 ч

22 ч

Глава 5. Элементы комбинаторики, статистики и теории вероятностей

Контрольная работа - №7

1

20 ч

23 ч

Обобщающее повторение

Итоговая контрольная работа

1

12 ч

20 ч

Итого

8

102 ч

136 ч

1Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/379137-rabochaja-programma-po-algebre-dlja-7-9-klas

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

Комментарии
Рабочая программа предназначена для учеников 7-9 классов. Данная рабочая программа способствует качественной подготовке учащихся.
структура рабочей программы :
пояснительная записка(нормати вное обеспечение, цели изучения курса
общая характеристика курса
описание места учебного предмета «Алгебра» в учебном плане
требования к результатам обучения и освоения содержания курса
содержание курса алгебры в 7-9 классах
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА АЛГЕБРЫ В 7—9 КЛАССАХ
Тематическое планирование представлено в двух вариантах. Первый вариант составлен из расчёта 3 часа в неделю, (102 часа за каждый год обучения).При работе по второму варианту тематического планирования на изучение алгебры отводится 4 часов в неделю.(136 часов за каждый год обучения).
Данная программа полезна к использованию
Благодарю за комментарии

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки
Курсы повышения квалификации