Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
02.12.2019

Открытый урок по алгебре 9 класс. Тема: «Построение графика квадратичной функции»

Айдаева Джарият Аббасовна
учитель математики
- знать определение квадратичной функции, алгоритм построения графика квадратичной функции;
- уметь находить координаты вершины параболы, дополнительные точки, строить параболу;
- воспитывать внимательность, самостоятельность, навыки работы с чертежными принадлежностями, культуру чертежа.

Содержимое разработки

Открытый урок по алгебре 9 класс.

Тема: «Построение графика квадратичной функции»

Цели урока:

- знать определение квадратичной функции, алгоритм построения графика квадратичной функции;

- уметь находить координаты вершины параболы, дополнительные точки, строить параболу;

- воспитывать внимательность, самостоятельность, навыки работы с чертежными принадлежностями, культуру чертежа.

Оборудование: мультимедийный проектор, индивидуальные карточки.

Ход урока.

I. Организационный момент.

На прошлом уроке мы рассмотрели различные преобразования параболы. Как вы думаете, какая цель у нас сегодня?

II. Проверка домашнего задания. (№108, 110(в, г), 111, 113). Собрать тетради.

III. Актуализация знаний. ( Фронтальный опрос. Одновременно несколько учащихся работают по индивидуальным карточкам: определить направление ветвей параболы и найти координаты вершины параболы).

Функция какого вида называется квадратичной?(

Что является графиком квадратичной функции? (парабола)

Сколько точек необходимо для построения параболы? (минимум 5)

От чего зависит направление ветвей параболы? (а>0 ветви вверх, a<0 ветви вниз)

Как получается график ?

Как получается график ?

Дайте название функции и скажите, что является графиком этой функции:

у = 2х -5 , у = 8 + 6х, у = 2х2 – 5, у = ,

у = - х, у = -3х2, у = (х – 2)2, у = -3(х + 1)2 – 4

6. Определите, график какой функции изображен на рисунке и назовите промежутки возрастания и убывания функции, нули.

Рис. 1

А. у = - (х-3)2+ 1 Б. у = (х+3)2-1 В. у = (х-1)2+3

IV. Изучение нового материала.

Квадратичной функцией называется функция, которую можно задать формулой вида y=ax²+bx+c, где х - независимая переменная, a, b и с -некоторые числа (причём а≠0).

Графиком квадратичной функции является парабола, ветви которой направлены вверх(если а>0) или вниз (если а<0).

Чтобы построить график функции есть два способа:

1 способ.

Выделить квадрат двучлена из квадратного трехчлена в виде

Построить график с помощью двух параллельных переносов.

2 способ.

Найти координаты вершины параболы А(m;n) по формулам: ; n = у(m) т.е. подставить найденное значение абсциссы m в формулу, которой задана функция и вычислить значение.

Прямая x=m является осью симметрии параболы. 

Заполнить таблицу значений функции:в таблице расположить вершину в середине таблицы и взять соседние симметричные значения х. 

Построить график функции: - отметить в координатной плоскости точки, координаты которых указаны в таблице; - соединить их плавной линией. 

Построим график функции по алгоритму

у = х²-2х-1

 ;

n=1-2-1=-2

Вершина параболы (1;-2). Прямая х=1 ось симметрии параболы.

 Ветви параболы направлены вверх, т.к.

 a=1>0

x

2

3

4

y

−1

2

7

Симметрично строим левую сторону параболы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. Физминутка.

1. Повороты головы вправо- влево, вверх- вниз, показываем смещение вершины параболы

у = -х2+ 3 у = -(х – 2)2 у = -х2+ 6

у = = х2- 5 у = (х + 1)2 у = -х2 – 8

2. Движения руками вверх- вниз, показываем направление ветвей параболы.

у = -х2+ 3 у = -(х – 2)2+ 2 у = -х2+ 6

у = = х2- 5 у = (х + 1)2- 5 у = -х2 – 8

VI. Решение упражнений.

№ 121 (найти координаты вершины параболы)

№122 (построить график, выяснить свойства функции)

VII.Подведение итогов:

Ответьте на вопросы. Верно ли, что:

Вершина параболы находится по формулам ….

При а >0 ветви параболы направлены …

При а <0 ветви параболы направлены …

Как называют точки пересечения параболы с осью Ох?

Домашнее задание:№123, №124.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/385215-otkrytyj-urok-po-algebre-9-klass-tema-postroe

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки