- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Математическая грамотность» как часть математической культуры
«Математическая грамотность» как часть математической культуры
Не мыслям надо учить, а мыслить (И.Кант)
«Математическая грамотность – способность человека определять и понимать роль математики в мире, в котором он живет, высказывать хорошо обоснованные математические суждения и использовать математику так, чтобы удовлетворять в настоящем и будущем потребности, присущие созидательному, заинтересованному и мыслящему гражданину».
Математику по праву считают «царицей наук». Именно на уроках математики учащиеся учатся логически мыслить, делать выводы. Как говорил Алексей Иванович Маркушевич: «Кто с детских лет занимается математикой, тот развивает внимание, тренирует свой мозг, свою волю, воспитывает настойчивость и упорство в достижении цели».
Обучение математике в начальной школе призвано сформировать у детей начальную математическую грамотность: знание начал курса арифметики, необходимые вычислительные навыки, умение проводить простейшие рассуждения в ходе решения текстовых задач, первичные навыки математической речи и письма. Тем самым начальная школа должна обеспечить подготовку детей к успешному изучению систематических курсов математики. Исходя из всего вышесказанного, развитие математической грамотности в настоящее время актуально.
Вообще в ходе уроков математики я развиваю математическую культуру учащихся в целом. В понятие математическая культура входят: алгоритмическая культура, вычислительная культура, графическая культура, логическая культура, математическая грамотность. Я решила углубить свои знания именно в вопросе по развитию математической грамотности учащихся, потому что в учебном пособии, на мой взгляд, очень мало заданий способствующих её развитию. Мною был разработан комплекс дополнительных заданий на развитие различных компонентов математической грамотности, а именно:
- на умение распознавать математические проблемы в быту и решать их по средствам математики;
- на формулирование решения математических задач на математическом языке;
- на запоминание и правильное применение математических терминов;
- на анализ данного способа решения математической проблемы (задачи).
Для эффективного развития математической грамотности учащихся я внесла в свои уроки задания из разработанного комплекса, которые я активно применяю на различных этапах урока. Также необходимо следить за собственной речью, правильно называть термины, не использовать незнакомую терминологию. Развивать способности учащихся не просто решить поставленную перед ними задачу, но и суметь объяснить её решение на математическом языке.
Комплекс заданий способствующих развитию математической грамотности обучающихся 2 класса
Задания для развития математической речи при работе с числовыми упражнениями:
1)Соотнесение знаковой и словесной формулировки. Например:
5+8 14-5 7+4 | К пяти прибавить восемь Уменьшаемое четырнадцать вычитаемое 5 Сумма чисел семи и четырёх Четырнадцать уменьшить на пять Четыре плюс семь |
2) Прочитайте словесные формулировки числовых выражений. Запишите их с помощью цифр и знаков действий и найдите их значения.
К четырём прибавить два, а затем из суммы вычесть два.
К девяти прибавить один, а затем из суммы вычесть один.
Из семи вычесть четыре, а затем к разности прибавить четыре.
Из шести вычесть три, а затем к разности прибавить шесть.
Работа по этому заданию начинается с чтения предложений. Потом дети записывают их с помощью чисел и знаков действий и вычисляют.
3)Игра «Сюрпризный конверт»
11-9
12-8
16-7
8+7
5+6
9+4
Учащимся даётся задание записать данные числовые выражения в тетрадь и найти их значения. Затем из «сюрпризного конверта» дети достают карточку со словесными формулировками данных числовых выражений. Им необходимо отметить знаком «+» те формулировки, которые соответствуют данным числовым выражениям:
Из одиннадцати вычесть девять.
Сумма чисел восьми и семи.
Первое слагаемое двенадцать второе слагаемое восемь.
Число пять увеличить на шесть.
Число шестнадцать уменьшить на семь.
Четыре увеличить на девять.
4) Игра «Верно ли что?» Ребятам предлагается словесная формулировка высказывания, которую нужно перевести в знаковую форму, затем определить ложность данных высказываний.
Двенадцать больше трёх на девять;
с восьми часов утра до пятнадцати часов того же дня прошло шесть часов;
сумма семи и восьми равна шестнадцать;
шестнадцать меньше семи.
На знание математических терминов, использовали следующий игровой момент:
1. Учитель или ученик называет часть слова (слага...) и бросает мяч. Другой ученик должен поймать мяч и дополнить слово (... емое).
2. Противоположные слова
Назвать слова, противоположные по значению.
· Прямая -
· Равенство -
· Четное -
· Много -
· Сложение -
Опрокинутые слова
Ученикам предлагался комплект слов, в которых буквы перепутаны местами. Нужно восстановить типичный порядок слов.
Скажем:
· УМАСМ - СУММА.
· АЕМОСЛАГЕ (слагаемое).
· ЧИТАВЫЕМОЕ (вычитаемое).
· КРАТВАД (квадрат).
· УГОТЬРЕНИК (треугольник).
· РЕЗОТОК (отрезок).
Задания на верное написание терминов: запишите слова, вставив пропущенные буквы: нум_рация, выч_таемое, ед_ница, кил_грамм; исправь ошибку в записи слов: вычисть, дилитель, слажить.
4. «Терминологическая викторина»:
1. Линия, которую невозможно свернуть? (прямая)
2. Оценка плохого ученика? (два)
3. Часть прямой, но не луч. (отрезок)
4. Ребус: в букве О число 7. (восемь)
5. Единица измерения длины, равная 100 см (метр)
6. Прямоугольник, у которого все стороны равны. (квадрат)
7. В треугольнике их 3. (углы)
8. Инструмент школьника для измерения длины. (линейка)
9. Форма Солнца, часов …. (круг)
10. Результат сложения. (сумма)
4.Соедини название величины и то, что удобней измерить этой величиной.
Сантиметр Метр Километр Рубль Час Килограмм | Расстояние между городами Стоимость покупки Длина указательного пальца Время, которое уходит на сон Вес своего тела Длина класса |
5.Игра «Четное – нечетное»
Ученики работают в парах. Один называет четное число, другой нечетное и т.д.
6. Соедини знаковую математическую запись с её названием.
8+9 4+5=9 56 6 5+67+5 3 | Равенство Неравенство Выражение Двузначное число Четное однозначное число Нечетное однозначное число |
После выполнения задания, учащимся предлагается составить собственный пример на каждое данное математическое понятие.
Для образования и становления математических представлений, математической речи учащимся нужно предлагать упражнения на независимое составление сходственных заданий.
Если ученики употребляют падеж неправильно, то учитель им должен помочь, читает сам, а после этого просит кого-нибудь из учащихся повторить. Так из урока в урок учащиеся формируют умения читать математические выражения. Словарная работа на уроках математики сводится к пониманию и знанию пояснять смысл математических терминов, усвоению их верного написания и образованию знаний составлять обстоятельное связное высказывание. С этой целью использую следующие задания:
Задание на трактование значений математических терминов:
1)объясните смысл слов: уменьшаемое, вычитаемое, слагаемые;
2)математическое выражение 9+8 Слава прочитал: « 9 плюс 8». Как ещё можно прочитать данное выражение? При составлении упражнений данного вида больше использую задания на использование терминов.
3)применяя данные слова и выражения, составьте известное вам правило: слагаемое, сумма, найти, вычесть, неизвестное, слагаемое, другое, чтобы, нужно, из.
Подобные задания давались и для запоминания и усвоения других изучаемых правил.
Данные задания направлены на усвоение верной и точной формулировки правил и определений, если данные задания применять регулярно, то учащиеся лучше усваивают определенные правила.
Название профессии, вы узнаете, выполнив первое задание. Результаты запишите в порядке возрастания и прочтите название своей профессии.
(Каждая бригада получает задание, выполнив которое узнают в роли людей, каких профессий они будут выполнять ремонт.)
1 бригада
А 1*9:3
Л 2*8:4
М 2*3:6
Р 34+9*4
Я 50-27:3
Маляр – рабочий, занимающийся окраской зданий, помещений.
2 бригада
П 8*3:6
Т 3*(8:2)
Н 36:9*7. И 6*6
К 7*7
О 81:9
Л 72:9
Плотник – рабочий, занимающийся простой обработкой дерева, постройкой деревянных зданий.
3бригада .
К 64:8 Т 30:5 О 81:9
Е 56:8
С 20:4
К 6*7
И 7*5
Щ 3*9
Л 4*3
Ь 9*2
Отдельно опишу работу по формированию умения работать над текстовой задачей. Учащиеся с точки зрения математической грамотности должны знать и понимать понятие «задача», из каких составляющих частей состоит задача (условие, вопрос), должны осознавать связь условия задачи и вопроса задачи. Для этого в работе мы использовали следующие задания:
Работа с условием задачи.
Можно использовать следующие формы работы с условием задачи, такие как:
Составление вопроса или вопросов к условию задачи.
Составление текста задачи по рисунку.
Восстановление задачи из так называемого «деформированного» текста.
Полагаю, что такие формы работы с условием задачи нужно использовать как можно чаще. Такие упражнения могут быть полезны не только для развития связной речи, но и развития умений работать над задачей, понимать связь данного и искомого задачи. Рассмотрим несколько примеров работы с условием задачи.
Такой вид заданий, как составление вопросов к условию задачи предполагает две формы работы:
1. Составить вопрос, уже обозначенный словом «сколько».
Вася набрал в шахматном турнире 6 очков, а Толя на 2 очка больше Васи. Сколько очков набрали оба мальчика? Сколько очков набрал Толя? На какой из этих вопросов легче ответить и почему?
Данное задание предполагает разбор и выбор решения задачи в зависимости от поставленного вопроса.
Предлагаемусловие задачи ,а вместо слов в вопросе стоит многоточие.
Задача. Вася набрал в шахматном турнире 6 очков, а Толя на 2 очка больше Васи. Сколько…?
Учащимся предлагается прочитать задачу и самим придумать вопрос к данному условию. Вопросы, которые предлагают дети, записываются на доске. Затем производится сравнение и анализ поставленных вопросов.
Так как вопросы могут быть определены, не в том порядке как решается задача, то необходимо отметить последовательность вопросов и принятие решения. Чтобы выяснить данную последовательность проводится анализ каждого из вопросов.
Вопрос: «Сколько очков набрали оба мальчика?» Выясняется у учащихся, что необходимо знать, чтобы ответить на этот вопрос (сколько очков набрал каждый из них). Если что-то из нужных данных неизвестно, значит, на вопрос нет возможности ответить сразу. Следовательно, этот вопрос не может быть первым.
Вопрос: «Сколько очков набрал Серёжа?» Работа аналогичная. Здесь выясняется, что сразу ответить на этот вопрос можно, нужно только выполнить необходимое действие. Следовательно, этот вопрос будет первым.
2. Составить вопросы, но дано только условие.
Например.
Задача. Папа нашёл в лесу 6 маслят, а подосиновиков 8. Придумай вопросы к данной задаче.
Вопросы, которые предлагают ученики, записываются на доске, с целью последующего возвращения к ним и перечитывание.
Если условие задачи позволяет поставить несколько вопросов, то обязательно проводится сравнение способов решения задачи. Так как вопросы могут быть составлены, не в том порядке, в каком решается задача, то необходимо отметить последовательность действий.
Пример: 1. Сколько всего грибов нашел папа? 2. Насколько меньше нашел папа маслят, чем подосиновиков? 3. Насколько больше подосиновиков нашел папа, чем маслят?
3.Составление текста задачи по рисунку. Данное задание поможет учителя понять правильно ли сформировано представление ученика о понятии «задача».
Детям демонстрируется рисунок и дается задание: «Составь и реши задачу». Если такая задача входит в содержание урока её необходимо решить.
4.Восстановление задачи из так называемого «деформированного» текста. Данное задание поможет учителя понять правильно ли сформировано представление ученика о понятии «задача».
5.Работа над решенной задачей. Данный вид работы над задачей направлен на развитие компонента математической грамотности: умение анализировать данный способ решения математической проблемы (задачи).
Многие ученики только после повторного анализа осознают план решения задачи. Это путь к выработке твердых знаний по математике.
Представление ситуации, описанной в задаче, в реальной жизни.
1)Например, после того как учащиеся решили задачу:
«Даша ездит в школу на автобусе. От дома до остановки Даша идет 5 мин, едет в автобусе 10 мин и еще 7 минут идет с остановки до школы. Сколько времени нужно Даше, чтобы добраться до школы?», детям на дом дается задание: узнать, сколько времени у Вас занимает дорога до школы, до ближайшего магазина, кинотеатра и т.п. Так дети учатся правильно высчитывать нужное для чего-либо время.
2)Также, мы с учениками обыгрывали ситуации похода в магазин: один ученик выступал в роли продавца, другие покупателями. Эту работу мы организовывали в группах.
3)При изучении темы «Периметр», находили периметр не только фигур, представленных в учебнике, но и периметр класса, а на дом было задано, найти периметр своей комнаты. Используя знания, полученные на уроке в жизни, дети лучше усваивают значение понятий.
Работа над данным видом заданий была интересна абсолютно всем учащимся. Они воспринимали эти задания, не как обычную задачу, которую нужно решить, а как игру, в которую они с удовольствием «играли».
Примеры заданий для развития математической грамотности
Главной задачей уроков математики является развитие словесно логического мышления. Математика - это теоретическая наука, в которой естественный способ изложения является способ восхождения от абстрактного к конкретному.
Математический стиль мышления характеризуется следующими особенностями:
1. Умение рассуждать
2. Стремиться находить кратчайший путь решения задачи.
Умение мыслить логически, составлять суждение по определенным правилам - необходимое условие успешного усвоения учебного материала. Эффективным способом развития мышления является решение учащимися нестандартных логических задач.
Известный педагог – математик Д.Пойа говорил:
«Что значит владение математикой? Это есть умение решать задачи, причём не только стандартные, но и требующие известной независимости мышления, здравого смысла, оригинальности, изобретательности».
предстоит рассмотреть, сравнить.
Для достижения результата на уроках математики необходимо применение различных форм работы:
1. Работа над решённой задачей. Многие учащиеся только после повторного анализа осознают план решения задачи.
2. Решение задач различными способами.
3. Правильно организованный способ анализа задачи - от вопроса или от данных к вопросу.
4. Представления ситуации, описанной в задаче. Разбиение задачи на смысловые части. Моделирование ситуации с помощью чертежа, рисунка.
5. Самостоятельное составление задач учащимися: используя слова на столько больше (меньше), по данному плану решения, по выражению.
6. Решение задач с недостающими и избыточными данными.
7. Изменение вопроса задачи.
8. Объяснение готового решения задачи.
9. Использование приема сравнения задач.
10. Запись двух решений - одного правильного другого неправильного.
11. Изменение задачи так, чтобы она решалась другим действием.
12. Закончить решение задачи.
13. Какой вопрос и какое действие лишнее в решении задачи (или восстанови пропущенный вопрос или действие в задаче).
14. Составление аналогичной задачи с измененными данными.
15. Решение обратных задач.
Моя главная цель научить учащихся добывать знания, умения, навыки и применять их в практических ситуациях. А также воспитать человека, умеющего анализировать прочитанное. Все методы, используемые педагогом, должны быть направлены на развитие познавательной, мыслительной активности, которая в свою очередь направлена на отработку, обогащение знаний каждого учащегося, развитие его функциональной грамотности.
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/421313-matematicheskaja-gramotnost-kak-chast-matemat
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Содержание профессиональной деятельности руководителя организации социального обслуживания»
- «Педагогические технологии в дополнительном образовании детей»
- «Цифровая грамотность педагога»
- «Основные аспекты профессиональной деятельности няни (работника по присмотру и уходу за детьми)»
- «Здоровьесберегающие технологии в дошкольном образовательном учреждении»
- «Технологии и формы организации работы педагога с родителями обучающихся»
- Деятельность тьютора по сопровождению детей с ограниченными возможностями здоровья
- Методика организации образовательного процесса в начальном общем образовании
- Мировая художественная культура: теория и методика преподавания в образовательной организации
- Основы реабилитационной работы в социальной сфере
- Педагогическое образование: теория и методика преподавания истории в образовательных организациях
- Дополнительное образование детей. Содержание и организация деятельности педагога-организатора

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.