Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
06.05.2021

Статья «Развитие логического мышления на уроках математики в начальных классах по ФГОС НОО»

Сонкина Наталья Сергеевна
учитель начальных классов
Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Однако, как это делать, учитель не всегда знает. Нередко это приводит к тому, что развитие логического мышления в значительной мере идет стихийно, поэтому большинство учащихся, даже старшеклассников, не овладевает начальными приемами логического мышления (анализ, сравнение, синтез, абстрагирование и др.) Учителя начальной школы зачастую используют упражнения тренировочного типа, основанные на подражании, не требующие мышления. В этих условиях недостаточно развиваются такие качества мышления как глубина, критичность, гибкость. Именно это и указывает на актуальность проблемы.

Содержимое разработки

Развитие логического мышления

на уроках математики в начальных классах

по ФГОС НОО

СЛАЙД №1

Сегодня мы поговорим о понятии, которое напрямую связано и с психологией, и с педагогикой. Это логическое мышление.

СЛАЙД №2

К. Д. Ушинский считал, что логика должна стоять в преддверии всех наук, поэтому главное назначение обучения в младших классах — научить ребенка логически мыслить.

СЛАЙД №3

Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Однако, как это делать, учитель не всегда знает. Нередко это приводит к тому, что развитие логического мышления в значительной мере идет стихийно, поэтому большинство учащихся, даже старшеклассников, не овладевает начальными приемами логического мышления (анализ, сравнение, синтез, абстрагирование и др.) Учителя начальной школы зачастую используют упражнения тренировочного типа, основанные на подражании, не требующие мышления. В этих условиях недостаточно развиваются такие качества мышления как глубина, критичность, гибкость. Именно это и указывает на актуальность проблемы.

Образовательный стандарт нового поколения поставил перед начальным образованием новые цели. Теперь в начальной школе ребёнка должны научить не только читать, считать и писать. Ему должны привить две группы новых умений. Речь идёт, во-первых, об универсальных учебных действиях, составляющих умения учиться: навыках решения творческих задач и навыка поиска, анализа и интерпретации информации. Во-вторых, речь идёт о формировании у детей мотивации к обучению, саморазвитию, самопознанию. Уже в начальной школе дети должны овладеть элементами логических действий (сравнения, классификации, обобщения, анализа и др.). Поэтому одной из важнейших задач, стоящих перед учителем начальных классов, является развитие самостоятельной логики мышления, которая позволила бы детям строить умозаключения, приводить доказательства, высказывания, логически связанные между собой, делать выводы, обосновывая свои суждения, и, в конечном итоге, самостоятельно приобретать знания. Математика именно тот предмет, где можно в большой степени это реализовывать. На прошлом заседании мы говорили о качественной успеваемости по этому предмету, которая вызывает тревогу.

Чему можно научить ребенка при обучении математике? Размышлять, объяснять получаемые результаты, сравнивать, высказывать догадки, проверять, наблюдать, обобщать и делать выводы.

СЛАЙД №4

В принципе в учебниках математики достаточно четко прослеживается линия на развитие познавательных интересов учащихся: в них есть упражнения, направленные на развитие внимания, наблюдательности, памяти, но работая по УМК «Школа России», я все больше убеждаюсь, что необходимы дополнительные задания развивающего характера, задания логического характера, задания, требующие применение знаний в новых условиях. Такие задания должны включаться в занятия в определенной системе.

Каждое поколение людей предъявляет свои требования к школе. На первый план выходит формирование универсальных учебных действий, обеспечивающих школьникам умение учиться, способность в массе информации отобрать нужное, саморазвиваться и самосовершенствоваться. Появились новые Федеральные образовательные стандарты общего образования второго поколения, в которых прописано, что главной целью образовательного процесса является формирование универсальных учебных действий, таких как: личностные, регулятивные, познавательные, коммуникативные. В соответствии стандартам познавательные универсальные действия включают: общеучебные, логические, а также постановку и решение проблемы.

Клогическим универсальным действиям относятся(информация представлена на слайде)

СЛАЙД №5

— анализ объектов с целью выделения признаков (существенных, несущественных);

— синтез — составление целого из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;

— выбор оснований и критериев для сравнения,сериации(логический прием упорядочивания предметов по степени выраженности какого-либо признака), классификации объектов;

— подведение под понятие, выведение следствий;

— установление причинно-следственных связей;

— построение логической цепочки рассуждений;

— доказательство;

— выдвижение гипотез и их обоснование.

Из представленной информации следует, что уже в начальной школе дети должны овладеть элементами логических действий (сравнения, классификации, обобщения и др.). Поэтому одной из важнейших задач, стоящих перед учителем начальных классов, является развитие всех качеств и видов мышления, которые позволили бы детям строить умозаключения, делать выводы, обосновывая свои суждения, и, в конечном итоге, самостоятельно приобретать знания и решать возникающие проблемы.

СЛАЙД №6

Внеурочный курс «Развитие познавательных способностей. Юным умникам и умницам» по обучению началам логики помогает ученикам начальной школы овладеть этими умениями. При этом процесс обучения должен быть построен а) на основе использования возможностей наглядно-образного мышления, характерного для этого возраста, б) двигаться по спирали – в каждом новом знании должны быть элементы ранее известного детям; в) возбуждать интерес и удивление у детей, а также желание справиться с задачей.

Участие младших школьников в образовательных конкурсах-олимпиадах тоже помогает в работе по развитию логического мышления.

СЛАЙД №7

Существует множество приёмов формирования логического мышления. Естественно, что с любого логического приёма работу начинать нельзя, так как внутри системы логических приёмов мышления существует строго определённая последовательность, один приём строится на другом.

СЛАЙД №8

Если мы хотим целенаправленно развивать интеллектуальные умения, основывающееся на таких приемах мыслительной деятельности как анализ, синтез, аналогия, обобщение, классификация, гибкость и вариативность мышления, то очевидно следующее: необходима специально выстроенная методика, направленная на формирование и развитие логических приемов умственных действий. Такие умения относятся не только к области математики, но и к мышлению в целом и к языку в частности. Учитель должен систематически создавать ситуации для успешного формирования логического мышления.

Приложение

Приёмы формирования логического мышления

1. Приём сравнения предметов. В ходе обучения приему дети должны овладеть следующими умениями:

а) выделение признаков;
б) установление общих признаков;
в) выделение основания для сравнения;
г) сопоставление по данному основанию.

Сравнение может идти

  • по качественным характеристикам (цвет, форма)

  • по количественным характеристикам: больше - меньше, длиннее - короче, выше - ниже и т.д.

Этот приём можно использовать на любом этапе урока.

Приложение №1

2. Приём анализа и синтеза

Анализ – это мысленное расчленение предмета или явления образующие его части, выделение в нем отдельных частей, признаков и свойств. Синтез – это мысленное соединение отдельных элементов, частей и признаков в единое целое. Используется в основном при решении задач.

Приложение №2

3. Приём обобщения.

Умения необходимые для овладения этого приёма:

  1. Относить конкретный объект к заданному взрослым классу и, наоборот, конкретизировать общее понятие через единичные (действие отнесения),

  2. Группировать объекта на основе самостоятельно найденных общих признаков и обозначать образованную группу словом (действия обобщения и обозначения) группировку в уме.

Учащиеся мысленно объединяют предметы и явления в группы по тем общим и существенным признакам, которые выделяются в процессе абстрагирования.

Приложение №3

4. Приём классификации.

Это мысленное распределение предметов на классы в соответствии с наиболее существенными признаками. Для проведения классификации необходимо уметь анализировать материал, сопоставлять (соотносить) друг с другом отдельные его элементы, находить в них общие признаки, осуществлять на этой основа обобщение, распределять предметы по группам на основании выделенных в них и отраженных в слове – названии группы – общих признаков. Таким образом, осуществление классификации предполагает использование приемов сравнения и обобщения.

Приложение №4

5. Закономерность.

Для успешного решения подобных задач необходимо развивать у детей умение обобщать признаки одного ряда и сопоставлять эти признаки с обобщенными признаками объектов второго ряда. В процессе выполнения этих операций и осуществляется поиск решения задачи. Важно обратить внимание на развитие у ребенка умения обосновывать свое решение, доказывать правильность или ошибочность этого решения, выдвигать и проверять собственные предположения (гипотезы).

Приложение №5

Приложение 1.

Сравнение

1Shape3Shape2Shape1 .

Shape6Shape4Shape5

Shape8Shape7

?

2. “Что изменилось?

Shape11Shape10Shape9

Shape14Shape19Shape18Shape12Shape13Shape15Shape16Shape17

3. “Найди лишний ряд”

2

5

8

11

14

1

4

7

10

13

3

4

5

6

7

3

6

9

12

15

4Shape26Shape31Shape30Shape29Shape32Shape28Shape27Shape25Shape24 . “Какая фигура лишняя?”

Приложение 2.

Классификация.

1.Разбей на группы

по цветупо формепо размеру

Shape35Shape33Shape36Shape37Shape34Shape38

Shape39Shape41Shape42Shape40Shape43Shape44

Shape45Shape47Shape46Shape50Shape48Shape49

2. “Найди числа кратные 8” 15, 18, 24, 36, 42,16, 54, 40, 48, 74, 28, 8, 12, 56, 64, 38,54, 32, 54, 81, 72.

3Shape52Shape51 . “Вставь пропущенные знаки”.    

Shape55Shape53Shape54Ма К; а М; К; М

Shape59Shape58Shape57Shape56 .а.9 К; М

К

4. “Разбей на группы числа” Shape60

а) чётныев)однозначныед)круглые

б) нечётныег)двузначныее)трёхзначные

Приложение 3.

Анализ и синтез

1.Малыш и Карлсон играли в игру: поочерёдно записывали цифры в ряды. Карлсон записывал любые цифры, а Малыш – по одному и тому же принципу.

- Подумай, по какому принципу записывал Малыш цифры, и допиши те, которые он не дописал.

Карлсон Shape61

МShape62 алыш Shape66Shape65Shape64

Shape69Shape70Shape68Shape67 30 45

2Shape72Shape71Shape73 . Из различных цифр я сделал бусы. 15 35 20 25 40

НShape76Shape75Shape74 о бусы были порваны

Кто сможет их помочь собрать,10 45

Тому поставлю пять!

( 10, 15,20, 25, 30, 35,40, 45.)

3. “Магический квадрат”.

РShape77 асположи цифры так, чтобы сумма чисел по каждой вертикали, горизонтали и диагонали была одинакова.

58


30

65

16

Shape78 9 37

Shape79Shape80

2Shape81 3 44

51


4. “Какая фигура лишняя?”

Shape83Shape84Shape82

Shape85

Приложение 4.

Закономерность.

  1. Shape86Shape88Shape87 Вставь число”.

Shape92Shape91Shape89Shape90 36 450 80

Shape100Shape99Shape97Shape98Shape93Shape96Shape94Shape95

12 ? ? 190 23

2.“Продолжи ряд”.

4867, 4870, 4873,

25770, 25789, 25790,

0, 15, 30, 45,

Shape101

Shape102

3. “Помоги заполнить таблицу”.




4.“Установи правило и впиши знаки + или - ”

7Shape106Shape105Shape103Shape104 000 1 400 7 = 1 2006000 1 8006 = 1300

8Shape110Shape109Shape108Shape107 000 1 500 5 = 1900 80001600 4 = 2400

Приложение 5.

Обобщение

  1. “Назови, одним словом”.

2, 4, 6, 8 _____________________

1, 3, 5, 7, 9 _____________________

18, 25, 33 ____________________

131, 139, 216 ___________________

  1. Shape112Shape111 Зачеркни лишнее выражение”.

Shape115Shape116Shape113Shape114

Shape117 1 + 63 + 42+38-3

Shape123Shape121Shape120Shape122Shape118Shape119

Shape124Shape125 7 - 27 - 65+27-3

  1. “Чем похожи числа?”

6 и 61;41 и 48;84 и 14.

“Чем различаются?”

5 и 15,88 и 18;12 и 31;

“Общие признаки?”

1 и 11; 20 и 10; 126 и 345

Нестандартные задачи

1класс

1.В класс пришли Катя, Лена и Маша. В каком порядке они могли прийти в класс?

2.У мальчика в коробке было 7 мух. На две мухи он поймал двух рыбок. Сколько рыбок он поймает на остальных мух?

3.Что легче: килограмм ваты или килограмм железа?

4.Арбуз весит 3 кг и пол арбуза. Сколько весит арбуз?

5.У каждой из 3сестёр по одному брату. Сколько детей в семье?

6.Год назад Ире было 5 лет. Сколько ей будет через 3 года?

7. В квадратном зале для танцев поставь вдоль стен 10 кресел так, чтобы у каждой стены стояло кресел поровну.

8.Девочки бегали наперегонки. Таня прибежала раньше Светы, но позже Иры, Лена прибежала раньше Иры, а Оксана – позже Светы. Кто из них прибежал раньше всех? Кто позже всех? В каком порядке они прибегали?

9.Пять человек обменялись рукопожатиями. Сколько было рукопожатий?

10.В цирке было 12 собачек. Половина всех собачек были белыми. Сколько белых собачек выступало в цирке?

11.Из трёх одинаковых по виду колец одно несколько легче каждого из двух других. Как найти его одним взвешиванием на чашечных весах без гирь?

12.У Павлика и Даши было поровну конфет. Павлик отдал Даше 2 конфеты. На сколько конфет у Даши стало больше?

13.Куда войдёт больше воды: в трёхлитровый чайник или трёхлитровый самовар?

Нестандартные задачи

2 класс.

1.Сестре и брату вместе 20 лет, причём брат на 2 года старше сестры. Сколько лет брату и сколько сестре?

2.В корзине лежит 5 яблок. Как разделить эти яблоки между 5 детьми, чтобы каждый получил по 1 яблоку и чтобы 1 яблоко осталось в корзине?

3.Высота сосны 20 м.По ней ползёт улитка, каждый день поднимаясь на 2 м вверх и каждую ночь опускаясь на 1 м вниз. За сколько дней улитка поднимется на вершину сосны?

4.Когда цапля стоит на одной ноге она весит 15 кг. Сколько она будет весить, если встанет на две ноги?

5. Две чашки и два кувшина весят столько же, сколько 14 блюдец. Один кувшин весит столько, сколько одна чашка и одно блюдце. Сколько блюдец уравновесит один кувшин?

6.БЛИЦ- турнир

а) Бабушке n лет, а внучке d лет. Во сколько раз внучка младше бабушки?

б)Фотограф сделал а чёрно- белых снимков и bцветных. На сколько цветных снимков меньше, чем чёрно – белых?

в)Миша съел а конфет, а Серёжа в 5 раз больше. Сколько конфет они съели вместе?

7.Сколькими способами можно разложить 5 ручек в 2 пенала?

8.На 20 корзин уходит столько же лыка, сколько требуется для того, чтобы сплести 80 лаптей. Сколько корзин можно сплести вместо 36 лаптей?

Нестандартные задачи

3 класс.

1.Груша тяжелее яблока, но легче апельсина. Яблоко тяжелее персика, а апельсин легче ананаса. Найди самый лёгкий и самый тяжёлый фрукт.

2.Объясни, как это может быть : 2 матери,3 дочки, 2 сестры, а всего – 4 женщины.

3.Старинные задачи- шутки.

а) Шла баба в Москву и повстречала 3 мужиков. Каждый из них нёс по мешку, в каждом мешке по коту. Сколько всего существ направлялось в Москву?

б)Длина бревна 5 аршин. В одну минуту от этого бревна отпиливают по одному аршину. Через сколько минут будет распилено всё бревно?

4.Соня положила в коробку 4 зелёных круга, 6 треугольников и 3 синих многоугольника, а всего 11 фигурок. Сколько синих треугольников положила Соня?

5.В венгерской пещере Аггрелек можно увидеть крупнейший в мире сталагмит, высота которого 25м. Из геологии известно, что сталагмит вырастает за 10 лет на 1 мм. Какой возраст этого сталагмита?

6.В класс завезли новые парты. В крайнем ряду у окна 6 двухместных парт,в среднем 5 таких парт. А в ряду у дверей могут сесть 12 учеников. Сколько всего ученических мест в классе?

7. К берегу реки подошли 3 людоеда. У каждого из них по одному слуге. В присутствии хозяина его слугу никто не трогает, а в отсутствии хозяина его слугу съедают другие людоеды. Всем им надо перебраться на другой берег в двухместной лодке. Как это сделать, чтобы никто никого не съел?

Нестандартные задачи

4 класс.

1.На одной планете живут 40 колиордов. 12 из них вечером пьют чай, 28 – смотрят телевизор, а 5 не делают ни того ни другого, так как рано ложатся спать. Сколько колиордов пьют по вечерам чай, смотря телевизор?

2. В семье 4 детей, им 5,8,13 и 15 лет, а зовут их Таня, Юра, Света и Лена. Сколько лет каждому из них, если одна девочка ходит в детский сад, Таня старше, чем Юра, а сумма лет Тани и Светы делится на 3?

3.Книга дороже карандаша в 3 раза, а альбом дороже карандаша в 5 раз. Книга дороже карандаша на 28 рублей. Сколько стоит альбом?

4.Старинная задача.

В классе учится 13 детей. У мальчиков столько зубов, сколько у девочек пальцев на руках и ногах. Сколько в классе мальчиков и сколько девочек?

5.Мышке до норки 20 шагов. Кошке до мышки 5 прыжков. За один прыжок кошки мышка делает 3 шага. Один прыжок кошки равен 10 шагам мышки. Догонит ли кошка мышку?

6. Попрыгунья стрекоза половину времени каждых суток красного лета спала, третью часть каждых суток танцевала, шестую часть –пела. Остальное время она решила посвятить подготовке к зиме. Сколько часов в сутки Стрекоза готовилась к зиме?

7.Семь гномов добили в рудниках 7818 алмазов. Первый гном добыл 1245 драгоценных камней, что в 5 раз превышает количество алмазов, добытых вторым гномом. Третий гном добыл на 906 алмазов больше, чем первый и второй гномы вместе, а четвёртый гном- лишь 38% алмазов, добытых третьим гномом. У остальных трёх гномов алмазов оказалось поровну. На сколько меньше алмазов собрал шестой гном, чем третий?

12

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/451297-statja-razvitie-logicheskogo-myshlenija-na-ur

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки