- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Связь математики и информатики
В настоящее время постоянно нарастает поток информации. Развитие науки, превращение ее в непосредственную производительную силу, в достояние каждого человека сопровождается увеличением информации, ибо неиссякаем источник, питающий науку, – мир, нас окружающий, неутолима жажда знаний. Бесконечен процесс познания, процесс выработки нового знания, получения новой информации. Умение легко и быстро ориентироваться во все возрастающем потоке научно-технических сведений по своей и смежным специальностям, широко использовать возможности новой, компьютерной техники – одно из важнейших качеств выпускников вуза. Важнейшей задачей нашего времени становится получение,
переработка, передача, хранение, представление и использование информации. Информация становится стратегическим ресурсом общества. Цепью образования становится подготовка человека к полноценной жизни в условиях информационного общества. Поэтому возникла необходимость массового освоения компьютеров. Умение пользоваться вычислительной техникой при решении профессиональных и учебных задач по праву приравнивается сейчас ко второй грамотности. Это требует наличия у каждого человека элементарных знаний о внутреннем устройстве ЭВМ, ее назначении и возможностях, способах взаимодействия с персональным компьютером; умений самому производить моделирование различных задач, составлять алгоритмы и действующие программы хотя бы на одном языке программирования. Д. Кнут (Лекции, 1993, с.52) отмечает: «Наука - это знание, настолько понятное нам, что мы могли бы обучить ему вычислительную машину; там, где мы еще не все до конца понимаем, начинается область искусства. Понятие алгоритма или программы чрезвычайно полезный тест глубины наших познаний о каком-то предмете, поэтому превращение искусства в науку означает, что мы способны автоматизировать данную область деятельности». Информатика - это наука, изучающая законы и методы накопления, передачи и обработки информации с помощью ЭВМ, а также область человеческой деятельности, связанной с применением ЭВМ. Информатика тесно связана с математикой. Количественные отношения и формы свойственны всем предметам и явлениям материального мира, поэтому можно говорить об универсальности математических методов и приемов мышления. Математика располагает точным символическим языком, позволяющим ей раскрывать как собственную сферу познания, так и сферу познания других наук, в том числе информатики. В современном мире роль математики существенно возросла. Трудно представить себе какую-нибудь отрасль хозяйства, область науки без этой дисциплины. Даже в социальную сферу математика ворвалась математической статистикой, теорией вероятностей и т. д. Математика и информатика призваны воспитать у человека культуру рациональных методов оперирования имеющимися и приобретения новых знаний. Поэтому курс “Математика и информатика” призван ознакомить студентов с некоторыми разделами высшей математики, углубить знания, полученные в школе по информатике и информационным технологиям,
СОРИПКРО

на тему:

Подготовила: Кочиева И.Т.
учитель математики
МБОУ «СОШ №2 с. Чермен»
г. Владикавказ 2020 г.
Содержание
Введение | 3 |
История развития математики | 13 |
Связь математики и информатики | 24 |
Заключение | 34 |
Список использованной литературы | 35 |
Введение
В настоящее время постоянно нарастает поток информации. Развитие науки, превращение ее в непосредственную производительную силу, в достояние каждого человека сопровождается увеличением информации, ибо неиссякаем источник, питающий науку, – мир, нас окружающий, неутолима жажда знаний. Бесконечен процесс познания, процесс выработки нового знания, получения новой информации. Умение легко и быстро ориентироваться во все возрастающем потоке научно-технических сведений по своей и смежным специальностям, широко использовать возможности новой, компьютерной техники – одно из важнейших качеств выпускников вуза. Важнейшей задачей нашего времени становится получение,
переработка, передача, хранение, представление и использование информации. Информация становится стратегическим ресурсом общества. Цепью образования становится подготовка человека к полноценной жизни в условиях информационного общества. Поэтому возникла необходимость массового освоения компьютеров. Умение пользоваться вычислительной техникой при решении профессиональных и учебных задач по праву приравнивается сейчас ко второй грамотности. Это требует наличия у каждого человека элементарных знаний о внутреннем устройстве ЭВМ, ее назначении и возможностях, способах взаимодействия с персональным компьютером; умений самому производить моделирование различных задач, составлять алгоритмы и действующие программы хотя бы на одном языке программирования. Д. Кнут (Лекции, 1993, с.52) отмечает: «Наука - это знание, настолько понятное нам, что мы могли бы обучить ему вычислительную машину; там, где мы еще не все до конца понимаем, начинается область искусства. Понятие алгоритма или программы чрезвычайно полезный тест глубины наших познаний о каком-то предмете, поэтому превращение искусства в науку означает, что мы способны автоматизировать данную область деятельности». Информатика - это наука, изучающая законы и методы накопления, передачи и обработки информации с помощью ЭВМ, а также область человеческой деятельности, связанной с применением ЭВМ. Информатика тесно связана с математикой. Количественные отношения и формы свойственны всем предметам и явлениям материального мира, поэтому можно говорить об универсальности математических методов и приемов мышления. Математика располагает точным символическим языком, позволяющим ей раскрывать как собственную сферу познания, так и сферу познания других наук, в том числе информатики. В современном мире роль математики существенно возросла. Трудно представить себе какую-нибудь отрасль хозяйства, область науки без этой дисциплины. Даже в социальную сферу математика ворвалась математической статистикой, теорией вероятностей и т. д. Математика и информатика призваны воспитать у человека культуру рациональных методов оперирования имеющимися и приобретения новых знаний. Поэтому курс “Математика и информатика” призван ознакомить студентов с некоторыми разделами высшей математики, углубить знания, полученные в школе по информатике и информационным технологиям, дать необходимые сведения о современных аспектах использования ЭВМ и последних достижениях.
История развития математики
С точки зрения выдающегося советского математика академика Андрея Николаевича Колмогорова, история развития математического знания распадается на четыре этапа: период зарождения математики (примерно до VI–V вв. до н.э.), на протяжении которого был накоплен достаточно большой фактический материал; период элементарной математики, начинающийся в VI–V вв. до н.э. и завершающийся в конце XVI в. («Запас понятий, с которыми имела дело математика до начала XVII в., составляет и до настоящего времени основу «элементарной математики», преподаваемой в начальной и средней школе»;охватывающий XVII-XVIII вв. период математики переменных величин, «который можно условно назвать также периодом «высшей математики»;период современной математики – математики XIX-XXI вв., в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».
1. Зарождение математики. Уже на самых ранних ступенях развития цивилизации необходимость счета общеупотребимых предметов привела к созданию простейших понятий арифметики натуральных чисел. Затем постепенно вырабатываются приемы выполнения простейших арифметических действий над натуральными числами, возникают системы счисления.
Потребности измерения количества зерна, длины дороги и т. п. приводят к появлению названий и обозначений простейших дробных чисел и к разработке приемов выполнения вычислительных действий над дробями. Таким образом, накапливается материал, складывающийся постепенно в древнейшую математическую науку - арифметику. Измерение площадей и объемов, потребности строительной техники, а несколько позднее – астрономии, вызывают развитие начал геометрии. Зачатки математических знаний обнаруживаются уже примерно за 4 тыс. лет до н.э. Об этом свидетельствуют дошедшие до нас египетские папирусы, клинописные вавилонские таблички, где встречаются решения различных арифметических, алгебраических и геометрических задач.
Вавилон. В 1849-1850 гг. в развалинах древнего города Ниневия была найдена древнейшая библиотека. Выяснилось, что почти за 2000 лет до н.э. были составлены таблицы умножения, квадратов последовательных целых чисел. Для решения квадратных уравнений народы Месопотамии разработали систему действий, эквивалентную современной формуле. Но не были найдены рассуждения, приведшие к используемому алгоритму, т. е. математику Древнего Вавилона можно было назвать рецептурной.
Для обозначения чисел вавилоняне пользовались двумя значками: вертикальным и горизонтальным клиньями. Числа от 1 до 9 записывались с помощью соответствующего числа вертикальных клиньев; 10 - горизонтальный клин, 60 - снова вертикальный клин. Данную систему нельзя назвать совершенной, так как одна комбинация могла обозначать различные числа.
Следы вавилонской нумерации сохранились до сих пор: 1 час = 60 минут, 1 минута = 60 секунд; аналогично при делении окружности на градусы, минуты, секунды. Такая традиция пришла из астрономии. Вавилоняне проводили систематические наблюдения за звездным небом, составляли календарь, вычисляли периоды обращения Луны и всех планет, могли предсказывать солнечные и лунные затмения. Эти знания астрономии впоследствии перешли к грекам, которые вместе с астрономическими таблицами заимствовали и шестидесятеричную нумерацию.
2. Период элементарной математики. Только после накопления большого конкретного материала в виде разрозненных приемов арифметических вычислений, способов определения площадей и объемов возникает математика как самостоятельная наука с ясным пониманием своеобразия ее метода и необходимости систематического развития ее основных понятий. В применении к арифметике и алгебре указанный процесс начался уже в Вавилонии. Однако вполне определилось это новое течение, заключавшееся в систематическом и логически последовательном построении основ математической науки, в Древней Греции. Созданная древними греками система изложения элементарной геометрии на два тысячелетия вперед стала образцом дедуктивного построения математической теории (Фалес Милетский, Пифагора Самосский, Евклид). Из арифметики постепенно вырастает теория чисел. Создается систематическое учение о величинах и измерении.
Математическое образование в России находилось в IX—XIII вв. на уровне наиболее культурных европейских стран. Затем оно было надолго задержано монгольским нашествием. Наиболее древнее, известное нам математическое исследование относится к 1130г. и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени.
Период элементарной математики заканчивается в Западной Европе в начале XVII в., когда центр тяжести математических интересов переносится в область математики переменных величин.
3. Период создания математики переменных величин. С XVII в. начинается существенно новый период развития математики, обусловленный явным введением в математику идей движения и изменения. Зависимости между величинами становятся самостоятельным объектом изучения. На первый план выдвигается понятие функции. Важную роль в этом играли работы Кеплера, Коперника, Торричелли, Галилео Галилея.
Крупным шагом в создании математики переменных величин был выход в свет книги Р. Декарта «Геометрия». Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математического анализа, вводящим в математику в явном виде идею бесконечного, к понятиям предела, производной, дифференциала и интеграла.
Во второй половине XVII в. Ньютоном и Лейбницем создается анализ бесконечно малых в виде дифференциального и интегрального исчислений, позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений.
4. Современная математика. Все созданные в XVII и XVIII вв. разделы математического анализа продолжали с большой интенсивностью развиваться в XIХ и XХ вв. Чрезвычайно расширился за это время и круг их применения к задачам, выдвигаемым естествознанием и техникой. Однако помимо этого количественного роста, с конца XVIII и в начале XIХ вв. в развитии математики наблюдается и ряд существенно новых черт.
Накопленный в XVII и XVIII вв. огромный фактический материал привел к необходимости углубленного логического анализа и объединения его с новых точек зрения. Связь математики с естествознанием приобретает теперь более сложные формы. Новые теории возникают не только в результате непосредственных запросов естествознания и техники, но также из внутренних потребностей самой математики. Таково в основном было развитие теории функций комплексного переменного, занявшей в начале и середине ХIХ в. центральное положение во всем математическом анализе. Другим замечательным примером теории, возникшей в результате внутреннего развития самой математики, явилась геометрия Лобачевского.
Чрезвычайное расширение предмета математики привлекло в ХIХ в. усиленное внимание к вопросам ее «обоснования», т. е. критическому пересмотру ее исходных положений (аксиом), построению строгой системы определений и доказательств, а также критическому рассмотрению логических приемов, употребляемых при этих доказательствах. Стандарт требований к логической строгости, предъявляемых к практической работе математиков над развитием отдельных математических теорий, сложился только к концу ХIХ в. Глубокий и тщательный анализ требований к логической строгости доказательств, строения математической теории, вопросов алгоритмической разрешимости и неразрешимости математических проблем составляет предмет математической логики.
В начале ХIХ в. происходит новое значительное расширение области приложений математического анализа. Если до этого времени основными разделами физики, требовавшими большого математического аппарата, оставались механика и оптика, то теперь к ним присоединяются электродинамика, теория магнетизма и термодинамика. Получает широкое развитие механика непрерывных сред. Быстро растут и математические запросы техники. В качестве основного аппарата новых областей механики и математической физики усиленно разрабатываются теории обыкновенных дифференциальных уравнений, теория дифференциальных уравнений с частными производными и уравнений математической физики.
Теория дифференциальных уравнений, берущая начало от работ французского математика Пуанкаре (1854-1941) и русского математика А.М. Ляпунова (1857-1918), послужила отправным пунктом исследований по топологии многообразий. Здесь получили свое начало «комбинаторные», «гомологические» и «гомотопические» методы алгебраической топологии. Другое направление в топологии возникло на почве теории множеств и функционального анализа и привело к систематическому построению теории общих топологических пространств.
Существенным дополнением к методам дифференциальных уравнений при изучении природы и решении технических задач являются методы теории вероятностей. Если в начале ХIХ в. главными потребителями вероятностных методов были теория артиллерийской стрельбы и теория ошибок, то в концу ХIХ и в начале ХХ вв. теория вероятностей получает много новых применений благодаря созданию теории случайных процессов и развитию аппарата математической статистики.
Теория чисел, представлявшая собрание отдельных результатов и идей, с ХIХ в. развивалась в различных направлениях как стройная теория.
Центр тяжести алгебраических исследований благодаря работам Н.Г.Абеля (1802-1899) и Э. Галуа (1811-1832) переносится в новые области алгебры: теорию групп, полей, колец, общих алгебраических систем. На границе между алгеброй и геометрией возникает теория непрерывных групп, методы которой позднее проникают во все новые области математики и естествознания.
Элементарная и проективная геометрия привлекают внимание математиков главным образом под углом зрения изучения их логических и аксиоматических основ. Но основными отделами геометрии, где сосредотачиваются наиболее значительные научные силы, становятся дифференциальная геометрия, алгебраическая геометрия, риманова геометрия.
В ходе развития математики и ее приложений постепенно расширяется их взаимосвязь с практической жизнью и потребностями других наук. Этот процесс развивается в двух направлениях: с одной стороны, усиливается влияние практической жизни и других наук (главным образом естественных) на развитие математики, с другой — расширяется сфера приложений математики, ее средств и методов в различных областях науки и техники. Эти две стороны связи математики с общественной жизнью и с другими науками всегда взаимообусловлены.
Связь математики и информатики
Несмотря на то, что математика и информатика ‒ совершенно разные дисциплины, они неразрывно связаны между собой. Математика является самостоятельной, сложившейся столетиями наукой, тогда как информатика не несет в себе качественно новой дисциплины, она лишь обобщает в себе элементы других наук.
Любую программу можно назвать алгоритмом, с четким выполнением заданной последовательности действий. Однако программа начинает свой жизненный цикл после запуска и может модифицироваться, меняться, исправлять ошибки или, наоборот, избавляться от них, тогда как алгоритм себе этого позволить не может.
Целью изучения математики является повышение общего кругозора, культуры мышления, формирование научного мировоззрения. Математика все больше и больше начинает присутствовать в различных областях других наук, играя ведущую роль в современном образовании. С развитием математики появляются различные направления изучения, которые становятся основой для других научных дисциплин, в то числе учебных, таких как информатика и другие спец. дисциплины.
Информатика получила от математики ряд результатов и теорий, нашедших широкое применение, в особенности в теории языков и трансляции, а также по верификации программ.
Информатика в теоретической ее части «выросла» из математики, использует активно математический аппарат. Многие темы курса информатики можно назвать математическими:
- элементы математической логики;
- системы счисления;
- элементы теории вероятностей и математическая статистика;
- теория графов;
- теория алгоритмов и некоторые другие.
Опыт показывает, что изучение этих тем в информатике, в математических дисциплинах позволяет студентам легче усваивать новые понятия, доказательства тех или иных утверждений, теорем.
Изучение студентами информатики дало возможность снять многие возникающие в процессе обучения математике познавательные трудности, вызвать интерес у обучающихся к математическим проблемам, показать возможность их решения новыми, нестандартными методами: алгоритмизацией решения сложных задач на компьютере, возможностью смоделировать и наглядно увидеть на экране дисплея математические процессы и управлять этими процессами и т.д.
Большой интерес у обучающихся вызывают обобщающие занятия математика–информатика по темам «Графический способ решения систем уравнений в среде Microsoft Excel», «Решение неравенств с одной переменной», «Решение уравнений», «Решение квадратных уравнений», «Графики функций и их свойства», «Циклические алгоритмы. Построение графиков тригонометрических функций». Такие интегрированные занятия используются в тех случаях, когда знание материала одних предметов необходимо для понимания сущности процесса, явления при изучении другого предмета. Интеграция в обучении позволяет выполнить и развивающую функцию, необходимую для всестороннего и целостного развития личности обучающегося, развития интересов, мотивов, потребностей к познанию.
Компьютерные платы представляют из себя электрическую цепь. Наличие в цепи тока означает 1, отсутствие ‒ 0. Система счисления двоичная. Система счисления ‒ это совокупность приемов и правил, по которым числа записываются и читаются. В компьютере используют двоичную систему счисления для представления информации, потому что она имеет ряд преимуществ перед другими системами счисления:
- для ее реализации нужны технические устройства с двумя устойчивыми состояниями;
- широко используется в оперативной памяти компьютера;
- возможно применение аппарата булевой алгебры;
- представление информации посредством только двух состояний надежно и помехоустойчиво;
- двоичная арифметика намного надежней десятичной. Недостаток двоичной системы ‒ быстрый рост числа разрядов, необходимых для записи чисел. Для этого и разработаны восьмеричная и шестнадцатеричная системы. Человеку трудно воспринимать многоразрядные числа, а для компьютера разрядность числа не имеет большого значения.
Перевод чисел из десятичной системы счисления в двоичную и наоборот выполняет машина, однако программисты часто используют восьмеричную и шестнадцатеричную системы счисления на этапах отладки программ и просмотра содержимого файлов в режиме машинных кодов. Числа в этих системах счисления считаются почти также легко, как десятичные, требуют соответственно в три и в четыре раза меньше разрядов, чем в двоичной системе счисления.
Заключение
В настоящее время математика и информатика играют очень важную роль в проведении исследований.
Математика со своей стороны предлагает исследователю ряд математических методов, позволяющих не только получить числовые характеристики исследуемого объекта, но и промоделировать его поведение под влиянием различных факторов, что имеет огромное значение.
Информатика предоставляет инструментарий, позволяющий исследователю многократно ускорить процесс проведения исследований. Применение специализированного программного обеспечения позволяет повысить точность и сократить трудоемкость, позволяет проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.
Таким образом, взаимодействие математики и информатики в проведении исследований позволяет качественно повысить уровень исследований, получить наиболее приближенные к реальности результаты и затратить минимальное количество времени как на проведение исследований, так и на обработку полученных результатов.
Список использованной литературы
1. Колмыкова Е.А., Кумскова И.А. Информатика. – М.: Академия, 2011.
2. Кульневич Т.П., Лакоценина С.В. Современный урок. Часть 1. – М., 2001.
3. Лакоценина Т.П. Современный урок. Часть 6. Интегрированные уроки. – М.: Учитель, 2008.
4. Угринович Н.Д. Информатика и информационные технологии. – М.: БИНОМ, 2006.
Электронные ресурсы
1. http://www.math-pr.com
2. http://profbeckman.narod.ru
3. http://www.kazedu.kz
4. http://www.fb.ru
1
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/477019-svjaz-matematiki-i-informatiki
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Методика преподавания информатики»
- «Обучение младших школьников в условиях реализации ФГОС НОО обучающихся с ОВЗ»
- «Организация образовательного процесса для обучающихся с нарушениями опорно-двигательного аппарата: особенности разработки и реализации АООП по ФГОС»
- «Характеристика детей с нарушениями слуха»
- STEM-технология в дошкольном образовании
- «Организация воспитательной деятельности по ФГОС НОО»
- Преподавание предмета «Основы безопасности и защиты Родины» в общеобразовательных организациях»
- Педагогическое образование: история и кубановедение в образовательной организации
- Обучение детей с ограниченными возможностями здоровья в общеобразовательной организации
- Преподавание технологии в образовательных организациях
- Учитель-методист в образовательной организации. Содержание методического сопровождения реализации общеобразовательных программ
- Английский язык: теория и методика преподавания в образовательной организации

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.