Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
19.01.2022

Программа математического кружка «Математический калейдоскоп для учащихся 5 класса»

Программа математического кружка «Математический калейдоскоп для учащихся 5 класса».

Содержимое разработки

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа ст. Старица»

Рабочая программа внеурочной деятельности

(математическое направление)

Кружок « Математический калейдоскоп»

Составитель:

С.В. Смирнова,

учитель МБОУ «СОШ ст. Старица»

ст. Старица

Пояснительная записка

Для жизни в современном обществе важным является формирование математического мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включается индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление.

Как известно, устойчивый интерес к математике начинает формироваться в 14-15 лет. Но это не происходит само собой: для того, чтобы ученик в 7 или 8 классе начал всерьёз заниматься математикой, необходимо, чтобы на предыдущих этапах он почувствовал, что размышления над трудными, нестандартными задачами могут доставлять подлинную радость.

Достижению данных целей способствует организация внеклассной работы, которая является неотъемлемой частью учебно-воспитательной работы в школе. Она позволяет не только углублять знания учащихся в предметной области, но и способствует развитию их дарований, логического мышления, расширяет кругозор. Кроме того, внеклассная работа по математике в форме кружковой деятельности имеет большое воспитательное значение, ибо цель ее не только в том, чтобы осветить какой-либо узкий вопрос, но и в том, чтобы заинтересовать учащихся предметом, вовлечь их в серьезную самостоятельную работу.

Освоение содержания программы кружка способствует интеллектуальному, творческому, эмоциональному развитию учащихся. При реализации содержания программы учитываются возрастные и индивидуальные возможности младших подростков, создаются условия для успешности каждого ребёнка.

Программа математического кружка содержит в основном традиционные темы занимательной математики: арифметику, логику, комбинаторику и т.д. Уровень сложности подобранных заданий таков, что к их рассмотрению можно привлечь значительное число учащихся, а не только наиболее сильных. Как показывает опыт, они интересны и доступны учащимся 5 - 6 классов, не требуют основательной предшествующей подготовки и особого уровня развития. Для тех школьников, которые пока не проявляет заметной склонности к математике, эти занятия могут стать толчком в развитии их интереса к предмету и вызвать желание узнать больше. Кроме того, хотя эти вопросы и выходят за рамки обязательного содержания, они, безусловно, будут способствовать совершенствованию и развитию важнейших математических умений, предусмотренных программой.

Обучение по программе осуществляется в виде теоретических и практических занятий для учащихся. В ходе занятий ребята выполняют практические работы, готовят рефераты, выступления, принимают участия в конкурсных программах.

В основе кружковой работы лежит принцип добровольности. Для обучения по программе принимаются все желающие учащиеся пятых – шестых классов.

Продолжительность курса.

Курс рассчитан на 1 час в неделю. Общее количество проводимых занятий – 34.

Цели и задачи программы

Основная цель программы – развитие творческих способностей, логического мышления, углубление знаний, полученных на уроке, и расширение общего кругозора ребенка в процессе живого рассмотрения различных практических задач и вопросов.

Достижение этой цели обеспечено посредством решения следующих задач:

1. Пробуждение и развитие устойчивого интереса учащихся к математике и ее приложениям.

2. Оптимальное развитие математических способностей у учащихся и привитие учащимся определенных навыков научно-исследовательского характера.

3. Воспитание высокой культуры математического мышления.

4. Развитие у учащихся умения самостоятельно и творчески работать с учебной и научно-популярной литературой.

6. Расширение и углубление представлений учащихся о практическом значении математики

7. Воспитание учащихся чувства коллективизма и умения сочетать индивидуальную работу с коллективной.

8. Установление более тесных деловых контактов между учителем математики и учащимися и на этой основе более глубокое изучение познавательных интересов и запросов школьников.

9. Создание актива, способного оказать учителю математики помощь в организации эффективного обучения математике всего коллектива данного класса (помощь в изготовлении наглядных пособий, занятиях с отстающими, в пропаганде математических знаний среди других учащихся).

Частично данные задачи реализуются и на уроке, но окончательная и полная реализация их переносится на внеклассные занятия.

Основными педагогическими принципами, обеспечивающими реализацию программы, являются:

• учет возрастных и индивидуальных особенностей каждого ребенка;

• доброжелательный психологический климат на занятиях;

• личностно-деятельный подход к организации учебно-воспитательного процесса;

• подбор методов занятий соответственно целям и содержанию занятий и эффективности их применения;

• оптимальное сочетание форм деятельности;

• доступность.

Программа может содержать разные уровни сложности изучаемого материала и позволяет найти оптимальный вариант работы с той или иной группой обучающихся. Данная программа является программой открытого типа, т.е. открыта для расширения, определенных изменений с учетом конкретных педагогических задач, запросов детей.

Тематическое планирование курса

п/п

Тема (содержание)

Форма проведения занятия

Литература

1

Организационное занятие. Математическая смесь.

Эвристическая беседа

2

Из истории математики:

  1. История развития математики.

  2. Счет у первобытных людей.

Эвристическая беседа

Поиск информации

Мини- доклады

2, 9

3-4

Поиски закономерностей.

Практическая работа

3, 4

5

Восстановление знаков действий.

Личная олимпиада

3,7

6

Запись цифр и действий у других народов.

Эвристическая беседа

Мини-доклады

2, 9

7

Действия с римскими цифрами.

Эвристическая беседа

3,4

8

Приемы устного счета.

Практическая работа

2

9

Приемы устного счета.

Практическая работа

2

10

Расшифровка записей.

Лабораторная работа

3, 4

11

Числовые ребусы.

Практическая работа

1, 3

12

Числа великаны и числа малютки.

Эвристическая беседа

Поиск информации

Мини-доклады

2, 4, 9

13

Логические задачи.

Практическая работа

1, 2, 3

14

Конечные и бесконечные множества.

Эвристическая беседа

4

15

Соревнование «Математическая регата».

Игра. Выполнение творческих заданий

7

16

Множества.

Эвристическая беседа

4, 9

17

Применение графов к решению задач.

Практическая работа

4

18

Переливания.

Практическая работа

1, 3, 9

19

Взвешивания.

Практическая работа

1, 3, 9

20

Математические ребусы.

Практическая работа

1, 3, 9

21

Равносоставленные фигуры.

Эвристическая беседа

2, 4

22

Равносоставленные фигуры. Танграм.

Практическая работа

2, 4

23

Геометрические задачи на разрезание.

Практическая работа

1, 3, 9

24

Игры с пентамино.

Практическая работа

3, 9

25

Соревнование. Математический конкурс «Кенгуру».

Выполнение конкурсных заданий

7

26

Геометрия в пространстве.

Эвристическая

беседа

Мини-доклады

3

27

Задачи, связанные с прямоугольным параллелепипедом.

Практическая работа

4

28

В худшем случае.

Практическая работа

2, 3, 4, 9

29

Принцип Дирихле.

Практическая работа

1, 2, 3, 4, 9

30

Круги Эйлера. Графы

Эвристическая беседа

9

31

Задачи на обратный ход.

Практическая работа

1

32

Соревнование. «Математическая стрельба».

Игра. Выполнение творческих заданий

3 (стр. 15, 55)

33

Решение математических задач с помощью рассуждений.

Практическая работа

9

34

Итоговое занятие. Награждение учащихся, успешно освоивших программу курса

Требования к уровню подготовки учащихся

По окончании обучения учащиеся должнызнать:

• нестандартные методы решения различных математических задач;

• логические приемы, применяемые при решении задач;

• историю развития математической науки, биографии известных ученых-математиков.

По окончании обучения учащиеся должныуметь:

• рассуждать при решении логических задач, задач на смекалку, задач на эрудицию и интуицию;

• систематизировать данные в виде таблиц при решении задач, при составлении математических кроссвордов, шарад и ребусов;

• применять нестандартные методы при решении программных задач

Методическое обеспечение

Методической особенностью изложения учебных материалов на кружковых занятиях является такое изложение, при котором новое содержание изучается на задачах. Метод обучения через задачи базируется на следующих дидактических положениях:

• наилучший способ обучения учащихся, дающий им сознательные и прочные знания и обеспечивающий одновременное их умственное развитие, заключается в том, что перед учащимися ставятся последовательно одна за другой посильные теоретические и практические задачи, решение которых даёт им новые знания;

• с помощью задач, последовательно связанных друг с другом, можно ознакомить учеников даже с довольно сложными математическими теориями;

• усвоение учебного материала через последовательное решение задач происходит в едином процессе приобретения новых знаний и их немедленного применения, что способствует развитию познавательной самостоятельности и творческой активности учащихся.

Большое внимание уделяется овладению учащимися математическими методами поиска решений, логическими рассуждениями, построению и изучению математических моделей. Примерами таких методов служат принцип Дирихле, круги Эйлера, графы и др.

Для поддержания у учащихся интереса к изучаемому материалу, их активность на протяжении всего занятия необходимо применять дидактические игры – современному и признанному методу обучения и воспитания, обладающему образовательной, развивающей и воспитывающей функциями, которые действуют в органическом единстве. Кроме того, на занятиях математического кружка необходимо создать "атмосферу" свободного обмена мнениями и активной дискуссии.

Что касается технологий обучения, т.е. определённым образом организованной серии (системы) приёмов, то наиболее адекватными являются

  • проблемно-развивающее обучение;

  • адаптированное обучение;

  • индивидуализация и дифференциация обучения;

  • информационные технологии.

При закреплении материала, совершенствовании знаний, умений и навыков целесообразно практиковать самостоятельную работу школьников.

Использование современных образовательных технологий позволяет сочетать всережимы работы: индивидуальный, парный, групповой, коллективный.

Кроме того, эффективности организации курса способствует использование различных форм проведения занятий:

- эвристическая беседа;

- практикум;

- интеллектуальная игра;

- дискуссия;

- творческая работа.

Поурочные домашние задания в разумных пределах являются обязательными. Домашние задания заключаются не только в повторении темы занятия, а также в самостоятельном изучении литературы, рекомендованной учителем.

Формы контроля:

Оценивание учебных достижений на кружковых занятиях должно отличаться от привычной системы оценивания на уроках. Можно выделить следующие формы контроля:

- сообщения и доклады (мини);

- тестирование с использованием заданий математического конкурса «Кенгуру»

- творческий отчет (в любой форме по выбору учащихся);

- различные упражнения в устной и письменной форме.

Также возможно проведение рефлексии самими учащимися.

Учащимся можно предложить оценить занятие в листе самоконтроля:

занятия

Определение уровня трудности занятия

Настроение

Самооценка работы на занятии

легкое

среднее

трудное

Литература:

  1. Власова Т.Г. Предметная неделя математики в школе. Ростов-на-Дону: «Феникс» 2006г.

  2. Галкин Е.В. Нестандартные задачи по математике.- Чел.: «Взгляд», 2005г.

  3. Депман И.Я. Мир чисел.: Рассказы о математике. - Л.:Дет.лит., 1982.

  4. Колягин Ю.М., Крысин А..Я. и др. Поисковые задачи по математике (4-5 классы).- М.: «Просвещение», 1979г.

  5. Руденко В.Н., Бахурин Г.А., Захарова Г.А. Занятия математического кружка в 5-м классе.- М.: «Издательский дом «Искатель», 1999г.уденкоР

  6. Фарков А.В. Математические кружки в школе. 5-8 классы.- М.: Айрис-пресс, 2005г.

  7. Шейнина О.С., Соловьева Г.М. Математика. Занятия школьного кружка 5-6 классы.- М.: «Издательство НЦ ЭНАС», 2002г.

  8. Шарыгин И.Ф., Шевкин А.В. Математика. Задачи на смекалку 5-6 классы.- М.: «Просвещение», 2000г.

  9. http://matematiku.ru/index.php?option=com_frontpage&Itemid=1

План воспитательной работы.

№ п/п

Наименование мероприятия

Цель

сроки

Место проведения

1.

Школьный тур Всероссийской олимпиады по математике

Развитие познавательной активности.

Формирование у учащихся устойчивого интереса к предмету, выявление и развитие их математических способностей.

сентябрь

СОШ ст. Старица

2.

Общероссийская олимпиада по математике «Инфоурок»

октябрь

СОШ ст. Старица

3.

Муниципальный тур Всероссийской олимпиады по математике.

ноябрь

Ново-Ямская СОШ

4.

Всероссийская олимпиада по математике «Олимпус».

ноябрь

СОШ ст. Старица

5.

Участие в муниципальном конкурсе «Ломоносовские чтения».

февраль

Емельяновская СОШ

6.

Выпуск стенгазеты ко Дню науки.

февраль

СОШ ст. Старица

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/480335-programma-matematicheskogo-kruzhka-matematich

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

Комментарии
Программа математического кружка "Математический калейдоскоп для учащихся 5 класса" Готовая рабочая программа - это всегда круто! Но в данном случае это еще и КРУТАЯ рабочая программа! Доступно, удобно, грамотно!

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки