- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Технологическая карта урока по теме: «Решение квадратных уравнений»
Технологическая карта урока
Тема:Решение квадратных уравнений по формуле
Класс:8
Предмет: Математика
УМК (авторы): Алгебра. 8 класс: учеб. для общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; под ред. С.А. Теляковского: Просвещение, 2014
Тип урока: урок рефлексии
Планируемые результаты:
Предметные:овладение обучающимися навыками решения квадратных уравнений по формуле.
Метапредметные и личностные: предложены к каждому этапу урока:
Регулятивные: (Р).
Познавательные: (П).
Коммуникативные: (К)
(описаны в Технологической карте урока).
Основные цели:
Деятельностная цель: развитие у обучающихся способностей к самостоятельному выявлению и исправлению своих ошибок на основе рефлексии коррекционно-контрольного типа: умение фиксировать собственные затруднения, выявлять их причину, строить и реализовывать проект выхода из затруднения.
Образовательная цель: коррекция и тренинг изученного способа действий – алгоритма решения по формуле квадратных уравнений.
Средства обучения:
1. Мультимедийная система. Презентация.
2. Школьная доска. Демонстрационные материалы .: 1) План работы на уроке самопроверки;
2) Пронумерованные эталоны способов действий;
3) Алгоритмы исправления ошибок и работы над ошибками.
3. Раздаточные материалы.
Приложения:авторский медиапродукт – презентация к уроку, демонстрационные материалы - эталоны и алгоритмы, раздаточные материалы - образцы и подробные образцы для самопроверки, карточки с дополнительными заданиями, таблицы фиксации результатов и фиксации приёмов и способов.
Организация учебной деятельности
Этап урока | Ход урока | Планируемые результаты обучения (на уровне УУД) | ||
Содержание учебного материала и организация диалога | Деятельность учителя | Деятельность обучающихся | ||
Мотивация к коррекционной деятельности ( 2 мин) | - Здравствуйте, ребята! Сегодняшний урок я бы хотела начать с высказывания древнегреческого ученогоД. Пойа: «Где есть желание, найдется путь». - Нам сегодня, ребята, предстоит поработать. Тот, из вас, кто будет трудиться с желанием, добросовестно и активно «отточит» свой ум, станет интеллектуально красивее. Ну чтож , давайте начнем - С какими уравнениями мы работали на прошлых уроках? Сегодня урок повторения по теме «Решение квадратных уравнений». План работы на уроке:
Повторите формулы (1 мин) | 1. Создает условия для возникновения у обучающихся внутренней потребности к коррекционной деятельности. 2. Организует деятельность обучающихся по установке тематических рамок урока. 3. Способствует формулировке целей урока. | 1. Участвуют в диалоге. 2. Устанавливают рамки «хочу – могу – буду». 3. Определяют тему и личностные цели урока. |
|
Актуализация знаний и фиксация затруднений в индивидуальной деятельности (15мин) | Какое уравнение называется квадратным? Каким может быть квадратное уравнение? Какие уравнения называются не полными? Работаем устно. На доске записано: 1)2х^2-11х+5=0 2)9х^2-13х+4=0 3)х^2-4=0 4)х^2+5х+4=0 5)7х^2+14х=0 6)2х^2-8х+4=0 Определите полное или не полное уравнение записано и назовите его коэффициенты. Сколько формул решения квадратных уравнений мы знаем? Какие и какие уравнения мы решаем с их помощью? Внимание на доску! Ответьте на вопрос. По какой формуле предпочтительнее решить каждое из полных представленных уравнений? Возьмите карточки и установите соответствие между уравнениями и формулами по которым предпочтительнее их решать. Карточки для самостоятельной работы
Оцените свою устную работу и работу по карточкам.
Таблица фиксации приёмов и способов
- Теперь я вам раздам эту таблицу, чтобы вы могли использовать её для фиксации используемых правил и эталонов. Что обьединяет все эти кавдратные уравнения? На доске: -2х+х^2-3=0 х^2 +17х=12 5-3х-х^2=0 Как определить количество корней квадратного уравнения? - А теперь решим квадратное уравнение, которое в этом году предлагается решить на экзамене учащимся 9 классов:
Решение оформляется в тетрадях с подробным комментарием всех шагов решения Ответ : х1=3,х2=-4 Решим задания из учебника №536(в) №541(б,в) | 1. Организует повторение способов действий, запланированных для рефлексивного анализа обучающимися. 2. Актуализирует соответствующие мыслительные операции, внимание, память. 3. Организует фиксацию актуализированных способов действий в речи и знаках (эталоны), обобщает их. 4. Обозначает основные используемые в самостоятельной работе эталоны (Э1. Э2, Э3, Э4). 5. Организует уточнение алгоритма исправления ошибок. 6. Мотивирует обучающихся к написаниюс.р. №1. 7. Организует выполнение с.р. №1с фиксацией каждого шага выполнения задания по алгоритму. 8. Организует самопроверку обучающимися своих работ по образцу и фиксацию полученных результатов (без исправления ошибок). 9. Организует мотивацию обучающихся к сопоставлению своих работ по эталону для самопроверки. | 1. Повторяют способов действий, запланированных для рефлексивного анализа. 2. Фиксируют актуализированные способов действий в речи и знаках (эталоны). 4. Уточняют обозначения основных используемых в самостоятельной работе эталоны (Э1. Э2, Э3, Э4). 5. Уточняют алгоритм исправления ошибок. 6. Настраиваются на написание с.р. №1. 7. Выполняют с.р. №1с фиксацией каждого шага выполнения задания по алгоритму. 8. Осуществляют самопроверку своих работ по образцу и фиксируют полученные результатов (без исправления ошибок). 9. Настраиваются на сопоставление своих работ по эталону для самопроверки с целью: а) выявить места и причины затруднений; б) самопроверки хода решения. |
|
Локализация затруднений (5 мин) | Самостоятельная работа по карточкам | 1. Организует пошаговое сопоставление работ по эталону для самопроверки (фронтально с проговариванием во внешней речи). 2. Организует реализацию согласованного плана действий. Для обучающихся, не допустивших ошибок: а) организует фиксацию отсутствия затруднений в ходе решения и его обоснования; б) организует выполнение задания более высокого уровня сложности. Для обучающихся, допустивших ошибки: а) организует выявление обучающимися мест затруднений; б) организует выявление обучающимися причин затруднений; в) организует исправление ошибок. | 1. Осуществляют пошаговое сопоставление своих работ по эталону для самопроверки с проговариванием во внешней речи. 2.Обучающиеся, не допустившие ошибок: а) осуществляют фиксацию отсутствия затруднений в ходе решения и его обоснования; б) выполняют задания более высокого уровня сложности. 3.Обучающиеся, допустившие ошибки: а) выявляют места затруднений; б) выявляют причины затруднений; в) исправляют ошибки. |
коррекция (Р). | ||
Коррекция выявленных затруднений (5 мин) | - У кого это задание вызвало затруднение? - В каком месте? - Почему возникло затруднение? - Какую цель ставят для себя те учащиеся, у которых возникли затруднения? (Научиться решать квадратные уравнения по формуле.) - Что вы будете использовать при работе над ошибками? (Алгоритм работы над ошибками, эталоны.) На данном этапе урока обучающиеся самостоятельно работают, используя алгоритм работы над ошибками, подробные образцы для самопроверки, находят и исправляют свои ошибки. Для тренинга учащимся предлагаются задания для выбора (заранее готовит учитель, прогнозируя типичные ошибки). | 1. Организует выполнение обучающимися задания на те способы действий, в которых допущены ошибки. 2. Организует самопроверку заданий. | 1. Выполняют задания с шагами, аналогичными тем, в которых были допущены ошибки. 2. По результатам работы с заданиями для выбора заполняют таблицу результатов. |
нравственно-этическое оценивание усваиваемого содержания (Л). | ||
Обобщение затруднений во внешней речи (3мин) | - У кого были затруднения с нахождением дискриминанта и определении количества его корней? - У кого были затруднения с вычислениями корней? - Какие правила вам помогли справиться с затруднениями? | 1. Организует обсуждение типовых затруднений. 2. Организует проговаривание формулировок способов действий, которые вызвали затруднения. | 1. Участвуют в обсуждении типовых затруднений. 2. Проговаривают формулировки способов действий, которые вызвали затруднения. |
|
Самостоятельная работа с самопроверкой по эталону (6 мин) | - Вы исправили ошибки, что дальше вы должны сделать? (Выполнять самостоятельную работу №2.) - С какой целью будете выполнять вторую самостоятельную работу? (Убедиться, что мы преодолели все затруднения и научились применять формулу для решения квадратных уравнений.)
После выполнения работы и проверки по подробному образцу для самопроверки: - Кому удалось справиться с затруднениями? - У кого остались затруднения? - Кто работал с дополнительными заданиями, что вам удалось сделать? | Для обучающихся, не допустивших ошибокорганизует самопроверку заданий. Для обучающихся, допустивших ошибки: а) организует выполнение с.р. №2, аналогичной с.р. №1; б) организует самопроверку работ по эталону для самопроверки и знаковую фиксацию результатов; в) организует фиксацию преодоления возникших ранее затруднений. | Обучающиеся, не допустившие ошибок осуществляют самопроверку выполненных заданий. Обучающиеся, допустившие ошибки: а) выполняют с.р. №2, аналогичную с.р. №1; б) осуществляют самопроверку работ по эталону для самопроверки и знаковую фиксацию результатов; в) фиксируют преодоление возникших ранее затруднений. |
оценка (Р). |
Включение в систему знаний и повторение (4 мин) | Решаются сопутствующие задачи к решению задания, использованного на этапе актуализации:
- А каким другим способом можно проверить, верно, ли решено квадратное уравнение? (способ выделением квадратного двучлена) - Решите эти способом второе уравнение и сравните полученный результат. | Организует выполнение заданий на повторение и применение знаний. | Выполняют задания на повторение и применение знаний. |
следование в поведении моральным нормам и этическим требованиям (Л). |
Рефлексия деятельности на уроке (3 мин) | - Используя таблицу результатов, проанализируйте свою деятельность, оцените достижение поставленных целей. Оцените свою работу на уроке с помощью таблицы. - У кого остались затруднения? - Как и когда мы будем их преодолевать? - Кто оценил свою деятельность на уроке на «Хорошо»? - Кто на «Отлично»? Домашнее задание:
| 1. Организует фиксацию степени соответствия поставленной цели и результатов деятельности. 2. Организует оценивание обучающимися собственной работы на уроке. 3. Организует фиксацию неразрешенных на уроке затруднений как направление будущей деятельности. 4. Организует обсуждение и запись домашнего задания. | 1. Фиксируют степень соответствия поставленной цели и результатов деятельности. 2. Оценивают результаты собственной работы на уроке. 3. Фиксируют неразрешенные на уроке затруднения как направление будущей деятельности. 4. Обсуждают и запись домашнего задания. |
прогнозирование своей деятельности (Р). |
Вариант 1 | Вариант 2 | Вариант 1 | Вариант 2 |
x2+7x+6=0 | x2+3x−54=0 | x2+7x+6=0 | x2+3x−54=0 |
x2+x=56 | 2х2 + 3х -5 = 0. | x2+x=56 | 2х2 + 3х -5 = 0. |
3х2 + 5х - 2 = 0. | х2-5х+6 =0. | 3х2 + 5х - 2 = 0. | х2-5х+6 =0. |
Вариант 1 | Вариант 2 | ||
x2+7x+6=0 | -6; -1 | x2+3x−54=0 | -9; 6 |
x2+x=56 | -8; 7 | 2х2 + 3х -5 = 0. | -2,5;1 |
3х2 + 5х - 2 = 0. | -2; 1/3 | х2-5х+6 =0. | 2;3 |
10
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/505074-tehnologicheskaja-karta-uroka-po-temereshenie
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Содержание и структура предмета биологии в современной школе»
- «Содержание и методы преподавания общеобразовательной дисциплины «Математика» по ФГОС СПО»
- «Особенности социальной реабилитации молодых инвалидов»
- «Современный урок в условиях реализации ФГОС»
- «Техника безопасности в кабинете биологии: организация и проведение инструктажа»
- «Организация учебно-воспитательного процесса в детской школе искусств (ДШИ) с учетом особых образовательных потребностей детей с ОВЗ»
- История и кубановедение: теория и методика преподавания в образовательной организации
- Математика: теория и методика преподавания в образовательной организации
- Социальная педагогика: воспитание и социализация детей в образовательной организации
- Основы тифлопедагогики в работе педагога с обучающимися с нарушениями зрения
- Современные технологии социального обслуживания населения
- Социально-педагогическое сопровождение обучающихся в образовательном процессе





Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.