- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Числовые ряды
Даулетов Ильназ Илусович
Учитель математики МБОУ Полилингвальный
образовательный центр «Адымнар - Нижнекамск» НМР РТ
Доклад на тему: Числовые ряды
Понятие бесконечных сумм фактически было известно ученым Древней Греции (Евдокс, Евклид, Архимед). Нахождение бесконечных сумм являлось составной частью так называемого метода исчерпывания, широко используемого древнегреческими учеными для нахождения площадей фигур, объемов тел, длин кривых и т.д. Так, например, Архимед для вычисления площади параболического сегмента (т.е. фигуры, ограниченной прямой и параболой) нашел сумму бесконечной геометрической прогрессии со знаменателем 1/4.
Ряд, как самостоятельное понятие, математики стали использовать в XVII в. И. Ньютон и Г. Лейбниц применяли ряды для решения алгебраических и дифференциальных уравнений. Теория рядов в XVIII-XIX вв. развивалась в работах Я. и И. Бернулли, Б. Тейлора, К. Маклорена, Л. Эйлера, Ж. Даламбера, Ж. Лагранжа и др. Строгая теория рядов была создана в XIX в. на основе понятия предела в трудах К. Гаусса, Б. Больцано, О. Коши, П. Дирихле, Н. Абеля, К. Вейерштрасса, Б. Римана и др.
Первое упоминание и использование числового ряда Правила арифметики дают нам возможность определить сумму двух, трех, четырех и вообще любого конечного набора чисел. А если количество слагаемых бесконечно? Пусть это даже «самая маленькая» бесконечность, т.е. пусть число слагаемых счетно.
Нахождение бесконечных сумм являлось составной частью так называемого метода исчерпывания, широко используемого древнегреческими учеными для нахождения площадей фигур, объемов тел, длин кривых и т.д. Так, например, Архимед для вычисления площади параболического сегмента (т.е. фигуры, ограниченной прямой и параболой) нашел сумму бесконечной геометрической прогрессии со знаменателем 1/4.
Почти две с половиной тысячи лет назад греческий математик и астроном Евдокс Книдский применял метод «исчерпывания» к нахождению площадей и объемов. Идея этого метода состоит в том, чтобы исследуемое тело разбить на счетное число частей, площади или объемы которых известны, а затем эти объемы сложить. Этот метод применяли и Эвклид, и Архимед. Естественно, полного и аккуратного обоснования метода в работах античных математиков не было. До этого нужно было пройти еще долгий двухтысячелетний путь, на котором были и блестящие откровения, и ошибки, и курьезы.
Вот, например, как рассуждал один средневековый богослов при доказательстве - не более и не менее - существования Всемогущего Бога.
Запишем в равновеликих величинах S как бесконечную сумму S = 1010101010… (1) «Заменим в правой части этого равенства каждый нуль на сумму 1+(-1)
S =1+(-1)+ 1+(-1)+ 1+(-1)+… (2)
Оставив в одиночестве первое слагаемое в правой части (2), объединим с помощью скобок второе слагаемое с третьим, четвертое с пятым и т.д. Тогда
S=1 + ((-1) +1) + ((-1) +1) +… = 1+0+0+… = 1.»
Начав с равенства S = 0, автор приходит к тому, что S = 1 и торжественно заканчивает: «Если из нуля можно по желанию получить единицу, то допустимо и предположение о сотворении мира из ничего!»
Согласимся ли мы с таким рассуждением? Конечно, нет. С точки зрения современной математики ошибка автора состоит в том, что он пытается оперировать с понятиями, которым не дано определения (что это такое - «сумма бесконечного числа слагаемых»), и совершает преобразования (раскрытие скобок, перегруппировка), законность которых не была им обоснована.
Широко пользовались счетными суммами, не уделяя достаточного внимания вопросу о том, что же точно означает это понятие, крупнейшие математики XVII и XVIII веков - Исаак Ньютон (1642-1727), Готфрид Вильгельм Лейбниц (1646-1716), Брук Тейлор (1685-1731), Колин Маклорен (1698-1746), Жозеф Луи Лагранж (1736-1813). Виртуозным мастерством обращения с рядами отмечался Леонард, Эйлер (1707-1783), вместе с тем он нередко признавал недостаточное обоснование используемых им приемов. В ста работах неоднократно встречаются предложения вроде такого «Мы обнаружили, что эти два бесконечных выражения равны, хотя и оказалось невозможным это доказать». Он предостерегает математиков от использования «расходящихся рядов», хотя сам не всегда заботился от этом, и лишь гениальная интуиция защищает его от неверных заключений; правда, и у него случаются «проколы».
К началу XIX века необходимость аккуратного обоснования свойств «счетных сумм» становится ясной. В 1812 году Карл Фридрих Гаусс (1777-1865) дает первый образец исследования сходимости ряда, в 1821 году Огюстен Луи Коши (1789-1857) устанавливает основные современные принципы теории рядов.
Суммирование бесконечных геометрических прогрессий со знаменателем, меньшим 1, производилось уже в древности (Архимед). Расходимость гармонического ряда была установлена итальянским ученым Менголи в 1650 г. Степенные ряды появились у Ньютона (1665), который полагал, что степенным рядом можно представить любую функцию. У ученых XVIII века ряды постоянно встречались в вычислениях, но далеко не всегда уделялось внимание вопросу о сходимости. Точная теория рядов начинается с работ Гаусса (1812), Больцано (1817) и, наконец, Коши, где впервые дано современное определение суммы сходящегося ряда и установлены основные теоремы. 1821 году Коши публикует «Курс анализа в Политехнической королевской школе», имевший наибольшее значение для распространения новых идей обоснования математического анализа в первой половине XIX века.
«Рядом называют неограниченную последовательность количеств получающихся один из других по определенному закону… Пусть

есть сумма n-первых членов, где n - какое-либо целое число. Если при постоянном возрастании значений n сумма неограниченно приближается к известному пределу S, ряд называется сходящимся, а этот предел-суммой ряда. Наоборот, если при неограниченном возрастании n сумма не приближается ни к какому определенному пределу, ряд будет расходящимся и не будет иметь суммы…» [Из первой части «Курса анализа в политехнической королевской школе» О. Коши (1821) {№54 т. III, c. 114-116, перевод А.П. Юшкевича}].
Задачи, приводящие к понятию числового ряда и те, в которых он использовался Быстроногий Ахиллес никогда не догонит черепахи, если в начале движения черепаха находилась на некотором расстоянии впереди него. Действительно, пусть начальное расстояние есть а и пусть Ахиллес бежит в k раз быстрее черепахи. Когда Ахиллес пройдет расстояние а, черепаха отползет па а/k, когда Ахиллес пройдет это расстояние, черепаха отползет на a/ k2, и т.д., т.е. всякий раз между состязающимися будет оставаться отличное от нуля расстояние.
В этой апории, помимо того же затруднения отсчитанной бесконечности, имеется и еще одно. Предположим, что в некоторый момент времени
Ахиллес догонит черепаху. Запишем путь Ахиллеса

и путь черепахи

Каждому отрезку пути а/ kn, пройденному Ахиллесом, соответствует отрезок пути a/kn+1 черепахи. Поэтому к моменту встречи Ахиллес должен пройти «столько же» отрезков пути, сколько и черепаха. С другой стороны, каждому отрезку а/ kn, пройденному черепахой, можно сопоставить равный ему по величине отрезок пути Ахиллеса. Но, кроме того, Ахиллес должен пробежать еще один отрезок длины а, т.е. он должен пройти на единицу больше отрезков, чем черепаха. Если количество отрезков, пройденное последней, есть б, то получаем + б = б
«Стрела». Если время и пространство состоят из неделимых частиц, то летящая стрела неподвижна, так как в каждый неделимый момент времени она занимает равное себе положение, т.е. покоится, а отрезок времени и есть сумма таких неделимых моментов.
Эта апория направлена против представления о непрерывной величине - как о сумме бесконечного числа неделимых частиц.
Актуальность изучения темы числовые ряды в том, что раздел математики, позволяющий решить любую корректно поставленную задачу с достаточной для практического использования точностью, называется теорией рядов. Даже если некоторые тонкие понятия математического анализа появились вне связи с теорией рядов, они немедленно применялись к рядам, которые служили как бы инструментом для испытания значимости этих понятий. Такое положение сохраняется и сейчас. Таким образом, представляется актуальным тема числовые ряды, их основные понятия и особенности сходимости ряда.
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/505479-chislovye-rjady
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Реализация программ досуговых и массовых мероприятий в детском лагере»
- «Организация процесса физического воспитания младших школьников в соответствии с ФГОС НОО»
- «ОГЭ по истории: содержание экзамена и технологии подготовки обучающихся в соответствии с ФГОС»
- «Современные подходы к преподаванию ОБЖ в условиях реализации ФГОС ООО»
- «Основы профессиональной деятельности классного руководителя в основной и средней школе»
- «Обучение английскому языку в соответствии с ФГОС НОО, ФГОС ООО от 2021 года и ФГОС СОО»
- Управленческая деятельность в дошкольной образовательной организации
- Преподавание в организации среднего профессионального образования
- Профессиональная деятельность музыкального руководителя дошкольной образовательной организации
- Инклюзивное образование: организация обучения детей с ограниченными возможностями здоровья
- Педагогика и методика преподавания истории и кубановедения
- Педагог-воспитатель группы продленного дня. Теория и методика организации учебно-воспитательной работы

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.