Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
25.09.2023

Рациональные приемы вычислений на уроках математики

Головачева Валентина Анатольевна
учитель начальных классов
Умения рационально производить вычисления характеризуют довольно высокий уровень математического развития. Знакомство и применение рациональных способов вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Эти умения чрезвычайно сложны, формируются они медленно и за время обучения в начальной школе далеко не у всех детей могут быть достаточно сформированы.

Содержимое разработки

« Мозг хорошо устроенный ценится больше,

чем мозг хорошо наполненный»

Рациональные приёмы вычисления на уроках математики.

Умения рационально производить вычисления характеризуют довольно высокий уровень математического развития. Знакомство и применение рациональных способов вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Эти умения чрезвычайно сложны, формируются они медленно и за время обучения в начальной школе далеко не у всех детей могут быть достаточно сформированы.

Говорят, если хотите научиться плавать, вы должны войти в воду, а если хотите уметь решать задачи, то должны начать их решать. Но для начала надо освоить азы арифметики. Научиться считать быстро. Считать в уме можно только при большом желании и систематической тренировке. И тогда перед вами откроется совсем другая математика: живая, полезная, понятная.

Начнём открывать.

Цель: : разработать методику применения системы упражнений для формирования прочных вычислительных навыков с использованием рациональных приёмов устного счёта и проверить её эффективность.

Для реализации этой цели необходимо решитьследующие задачи:
1) ознакомиться с проблемой изучения вычислительной культуры учащихся;
2) изучить основные особенности вычислительных навыков;
3) рассмотреть различные приемы быстрого счета как способа решения изучаемой проблемы;
4)  рассмотреть применение их на уроках;
5)  разработать систему упражнений по теме «Арифметические действия с многозначными числами», которая поможет учителям в проведении устного счета на уроках математики;
6) проверить эффективность предложенной методики в опытном преподавании.
Объект исследования – процесс обучения младших школьников рациональным приёмам вычислений арифметических действий.

Предмет исследования – вычислительные приёмы арифметических действий.

ГЛАВА 1 Требования к вычислительным умениям и навыкам обучающихся.

1.1. Понятие математических навыков.

Вычислительный навык М.А. Бантова определила как «высокую степень овладения вычислительными приемами» и выделила следующие его характеристики — правильность, осознанность, рациональность, обобщенность, автоматизм, прочность.[15]

Вычислительные навыки успешно формируются у учащихся при создании в учебном процессе определенных условий. Процесс овладения вычислительными навыками довольно сложен: сначала ученики должны усвоить тот или иной вычислительный прием, а затем в результате тренировки научиться достаточно быстро выполнять вычисления, а в отношении табличных случаев - запомнить результаты наизусть.

Прием вычислений складывается из ряда последовательных операций, а число операций определяется прежде выбором теоретической основы вычислительного приёма.

Приобрести вычислительные навыки - значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия и выполнять эти операции достаточно быстро.

Навыки обладают большой гибкостью и подвижностью, т.е. их можно совершенствовать – как бы хорошо ученик не считал, всегда можно довести вычислительный навык до еще большего совершенства. Усвоение навыка дает возможность ученику экономить время, увеличить темп учебной работы, совершенствовать ее качество и переключать внимание на обдумывание последующих этапов деятельности.

Навык формируется в упражнении. Упражнение – это целенаправленное, многократно выполняемое действие, которое осуществляется с целью его усовершенствования. В процессе упражнений деятельность организуется так, чтобы было предусмотрено выполнение действий, приводящих к формированию прочных и совершенных навыков. Новый навык формировать легче, чем перестраивать неправильно выработанный. Организуя упражнения, необходимо вызвать у обучающегося положительное отношение к ним. Навык нельзя выработать в один прием. Необходимо более или менее длительная тренировка, распределенная во времени, чтобы навык достиг желаемого уровня совершенства.

1.2.Критерии и уровни сформированности навыка.

Рассмотрим более подробно характеристики вычислительного навыка.

Правильность - ученик правильно находит результат арифметического действия, т. е. правильно выбирает и выполняет операции, составляющие приём.

Осознанность - ученик осознает, на основе каких знаний выбраны операции и установлен порядок их выполнения, в любой момент может объяснить как он решал и почему именно так.

Рациональность - ученик выбирает для данного случая более рациональный приём, то есть выбирает те из возможных операций, выполнение которых легче других и быстрее приводит к результату. Но рациональный вычислительный прием для одного ученика не всегда рационален для другого. Поэтому, необходимо, рациональность вычислительного навыка заменить его эффективностью. В кратком экономическом словаре «эффективность — в общепринятом смысле представляет собой соотношение затрат и результатов». [6]

Поэтому вычислительный навык можно считать эффективным, если в рамках данного способа вычислений получение правильного результата достигается минимизацией затрат умственных ресурсов. Т.е. ученик, используя различные знания, может выбрать не обязательно более рациональный вычислительный прием с точки зрения методики, а более удобный (легкий) для него в конкретной ситуации, быстрее других приводящий к результату.

Обобщенность - ученик может применить приём вычисления к большому числу случаев, то есть способен перенести приём вычисления на новые случаи.

Автоматизм - ученик выполняет и выделяет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операций.
Высокая степень автоматизации должна быть достигнута по отношению к табличным случаям сложения и вычитания, умножения и деления.

Прочность - ученик сохраняет сформированные вычислительные навыки на длительное время.

Одной из характеристик вычислительных навыков, наряду с перечисленными выше, выступает умение прогнозировать результат и оценивать его истинность, которое необходимо в дальнейшем обучении.

Руководствуясь мнением Истоминой Н.Б., методические рекомендации которой использованы в УМК «Гармония», мы включаем в свою работу на уроках математики решение заданий на «прикидку», основу которых составляет усвоение учащимися понятий и общих способов действий, усвоение приемов рациональных вычислений и даёт возможность учащимся применять самопроверку. По-нашему мнению, такие задания особенно актуальны при изучении арифметических действий с многозначными числами, основу которых составляет усвоение алгоритма, что является трудоемким и однообразным процессом.

По данным характеристикам выделяют три уровня сформированности: высокий, средний и низкий.

Для формирования вычислительного навыка ученик должен овладеть всеми характеристиками на высоком уровне.

1.3. Рациональность вычислений.

Остановимся более подробно на таком качестве вычислительного навыка как рациональность.

Особое внимание к рационализации вычислений связано с практической направленностью математического образования, с необходимостью применять полученные знания, действовать не только по образцу, но и в нестандартных ситуациях, комбинируя известные способы решения учебной задачи. Знакомство с рационализацией вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Применение свойств арифметических действий позволяет учителю воспитывать интерес к математике, вызвать у детей желание научиться вычислять наиболее быстрыми, лёгкими и удобными способами. Такой подход позволит поддерживать стремление к использованию математических знаний в повседневной жизни.

Умение рационально выполнять вычисления опирается на осознанное использование законов арифметических действий, применение этих законов в нестандартных условиях, использование универсальных приемов упрощения вычислений.

Свойства арифметических действий (переместительное и сочетательное свойства сложения и умножения, распределительное свойство умножения относительно сложения) не являются специальным предметом изучения в начальной школе, а рассматриваются в связи с формированием устных приёмов  вычислений. Это означает, что в процессе обучения на конкретных простых числовых примерах рассматриваются различные способы прибавления числа к сумме, суммы к числу; вычитания числа из суммы, суммы из числа; умножения суммы на число и др. с целью формирования умения осознанно выбирать те способы, которые позволяют рационально осуществлять процесс вычислений.

В начальном курсе математики изучение вычислительного приема происходит после того, как школьники усвоят его теоретическую основу (определения арифметических действий, свойства действий и следствия, вытекающие из них). Причем в каждом конкретном случае учащиеся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительного приема,  конструируют различные приемы для одного случая вычислений, используя различные теоретические положения. [9]

В учебниках математики представлены приемы рациональных вычислений с точки зрения методики. Преобладание же действий по образцу в вычислениях младших школьников ведёт к вычислительным стереотипам, применение которых возможно лишь в знакомой ситуации.

Проблема рациональных вычислений неоднократно поднималась на страницах журнала «Начальная школа».

Авторы публикаций достаточно подробно описывают теоретические основы различных вычислительных приемов, часть из  них может успешно применяться учителями при обучении младших школьников. Это способ группировки, умножения и деления на 11, 5, 50, 15, 25 и др., округления одного из компонентов арифметического действия и др.; теоретическая основа  их — свойства арифметических действий, ознакомление с которыми происходит в начальном курсе математики. Остановлюсь на некоторых  способах вычислений, которые посильны  учащимся, но мало используются в практике обучения младших школьников.

ГЛАВА 2 Рациональные приёмы и их применение на уроке.

2.1. Приемы устных вычислений, основанные на законах и свойствах арифметических действий и приёмы основанные на изучении результата действий в зависимости от изменения компонентов

2.1.1.Сложение и вычитание

1.Сложение с перестановкой слагаемых (делаем перестановку слагаемых, применяя переместительный закон, чтобы получить круглое число при сложении, группу слагаемых заключаем в скобки и складываем на основании сочетательного закона)

73+138+107+50+42=(73+107)+(138+42)+50=180+180+50=410

2. Прибавление суммы к числу.
384 + (416 + 548) = 384 + 416 + 548 (на основании следствия сочетательного закона) = (384 + 416) + 548 (сочетательный закон) = 800 + 548 (правило порядка действий) = 1348.
Итак, правило прибавления суммы можно сформулировать следующим образом: чтобы прибавить к числу сумму, достаточно прибавить к нему одно за другим все слагаемые.
3.Прибавление числа к сумме.
1) (337 + 488) + 663 =663 + (337 + 488) (переместительный закон) = 663+ 337 + 488 (правило прибавления суммы) = (663 + 337) + 488 (сочетательный закон) = 1000 + 488 = 1488.
Примененное здесь свойство сложения формулируется так: чтобы к сумме чисел прибавить число, достаточно прибавить его к одному из слагаемых.

4.Сложение с округлением. Округление одного или нескольких слагаемых.
Этот прием основан на изменении суммы при изменении слагаемых.
а) Если одно из слагаемых увеличить (или уменьшить) на несколько единиц , а другое слагаемое оставить без изменения, то сумма увеличится (или уменьшится) на столько же единиц . Округляя слагаемое, мы увеличиваем (или уменьшаем) его, а следовательно, и сумму на несколько единиц . Чтобы сумма не изменилась, надо уменьшить (или увеличить) ее на столько же единиц.
1199 + 406 = (1200 + 406) -1= 1605.
б) Если одно из слагаемых увеличить (или уменьшить) на несколько единиц , другое слагаемое уменьшить (или увеличить) на столько же единиц , а остальные слагаемые оставить без изменения, то сумма не изменится. Перемещаем несколько единиц из одного слагаемого в другое, сумма не изменяется.
994 + 196 = 994 + 190 + 6 = (994 + 6) + 190 = 1000 + 190 = 1190.
В том случае, когда одно из слагаемых близко к разрядной единице (на несколько единиц больше или меньше), удобнее заменить его разрядной единицей, а в полученный от сложения результат внести необходимую поправку.
5. Округление уменьшаемого или вычитаемого.
Этот прием основан на изменении разности от изменения уменьшаемого или вычитаемого.
а) Если уменьшаемое увеличить или уменьшить на несколько единиц, то разность соответственно увеличится или уменьшится на столько же единиц. Округляя уменьшаемое, мы увеличиваем или уменьшаем его на несколько единиц ,следовательно, и разность увеличивается или уменьшается на столько же единиц . Чтобы разность не изменилась, надо ее уменьшить или увеличить настолько же единиц .
1)795-246=(800-246)-5=549
Уменьшаемое увеличено на несколько единиц, разность, записанная в скобках, должна быть уменьшена на столько же единиц.
2)307-165=(300-165)+7=142
Уменьшаемое уменьшено на несколько единиц; записанная в скобках разность должна быть увеличена на столько же единиц.
б) Если вычитаемое увеличить или уменьшить на несколько единиц то разность соответственно уменьшится или увеличится на столько же единиц Округляя вычитаемое, мы увеличиваем или уменьшаем его, а следовательно, разность уменьшается или увеличивается на несколько единиц, чтобы разность не изменилась, надо ее увеличить или уменьшить на столько же единиц
1)341-199=341-(200-1)=341-200+1=142
Вычитаемое увеличено на несколько единиц, записанная в скобках разность должна быть увеличена на столько же единиц.
2)910-514=910-510-4=396
Вычитаемое уменьшено на несколько единиц, записанная в скобках разность должна быть уменьшена на столько же единиц.
Итак:
1)     При округлении уменьшаемого:
а)      если уменьшаемое увеличено, разность надо уменьшить;

б)      если уменьшаемое уменьшено, разность надо увеличить.
2)     При округлении вычитаемого:
а)      если вычитаемое увеличено, то и разность надо увеличить;
б)      если вычитаемое уменьшено, то и разность надо уменьшить.
Выгоднее округлять вычитаемое, так как разрядное или целое число легко вычитается из любого числа.
6. Округление слагаемых и замена сложения умножением.
На основании определения умножения и свойств изменения суммы при изменении слагаемых можно округлить слагаемые до одного и того же разрядного числа, разрядное слагаемое число умножить на число слагаемых и к произведению прибавить или из произведения вычесть разницу, которая получается в результате замены каждого слагаемого разрядным числом .

77+72+73+75+58=(70х4)+7+3+2+5+58=280+10+7+58=280+(17+3)+55=355

7.Распределительный закон умножения по отношению к сложению (умножение суммы чисел на число).
(7+4)х25=7х25+4х25=175+100=275
Чтобы умножить сумму нескольких чисел на данное число, достаточно умножить каждое слагаемое на это число и полученные произведения сложить.
К указанному способу по обоснованию приема близок способ вынесения за скобки общего множителя или множимого.
19х4+19х6=19х(4+6)=19х10=190
8. Распределительный закон умножения по отношению к вычитанию (умножение разности чисел на число).
(25-7)х4=25х4-7х4=100-28=72
Чтобы умножить разность чисел на какое-нибудь число, достаточно умножить на это число отдельно уменьшаемое и вычитаемое и из первого произведения вычесть второе.
К указанному способу по обоснованию приема близок способ вынесения за скобки общего множителя.

9.Прибавление разности к числу.

275+(116-65)=275-65+116=326

10.Вычитание суммы из числа.

137-(37+68)=(137-37)-68=100-68=32

11.Вычитание разности.

222-(117-28)=222-117+28=(222+28)-117=250-117=133

12.Сочетательный закон.

513-194-106=513-(194+106)=213

2.1.2.Умножение и деление

  1. Замена нескольких сомножителей их произведением (сочетательный закон умножения).
    17х25х4=17х(25х4) (сочетательный закон умножения) =17х100 = 1700.
    Чтобы перемножить несколько чисел, достаточно отдельные сомножители соединить в группы, произвести умножение по группам, а затем перемножить полученные произведения.

2.Перестановка сомножителей (переместительный и сочетательный законы умножения).
4х8х3х25х125=4х25х8х125 (переместительный закон умножения) =100х1000х3 (сочетательный закон умножения) = 300 000.
Чтобы перемножить несколько чисел, можно поменять местами отдельные сомножители, соединить их в группы, затем произвести умножение по группам и перемножить полученные произведения.
3.Умножение произведения на число.
(40х7х3)х25=40х7х3х25 (порядок действий) = 40х25х7х3(переместительный закон умножения) =(40х25)х7х3 (сочетательный закон умножения) =1000х7х3=21000.
Чтобы умножить произведение нескольких чисел на какое-либо число, достаточно один из сомножителей умножить на это число и полученное произведение последовательно умножить на другие сомножители.
4.Умножение числа на произведение.
64х(125х7х3)=64х125х7х3(следствие сочетательного закона) =8000х7х3 (сочетательный закон умножения) = 168000.
Чтобы умножить число на произведение нескольких чисел, достаточно умножить это число на первый сомножитель, полученное произведение – на второй, затем новое произведение – на третий и т.д. до конца.
5.Умножение произведения на произведение.
(8х28)х(125х25)=(8х28)х125х25 (умножение числа на произведение) =8х28х125х25 (порядок действий) =8х125х28х25 (переместительность)=(8х125)х(28х25)  (сочетательность) =1000х700=700000.
Здесь применено следующее правило: чтобы умножить произведение нескольких чисел на другое произведение, достаточно последовательно перемножить все сомножители обоих произведений.

Мы знаем, что если один из сомножителей увеличить в несколько раз, а другой уменьшить во столько же раз, то произведение не изменится. На этом свойстве основывается применение сокращенных способов умножения на 5, 25, 125 и на другие числа, представляющие собой делители числа, изображаемого единицей с нулями.
1.Умножение на 5, 50, 500 и т.д.
Умножение числа на 5, 50, 500 и т.д. заменяется умножением на 10, 100, 1000 и т.д. с последующим делением на 2 полученного произведения. Или: сначала множимое делится на 2, а потом полученное частное умножается на 10, 100, 1000 и т.д.
1)54х5=(54:2)х(5х2)=270;54х5=(54х10):2=540:2=270;
2)686х50=(686х100):2=34300;
3)28х500=(28:2)х(500х2)=14х1000=14000.

2.Умножение на 25, 250, 2500 и т.д.
При умножении числа на 25, 250, 2500 и т.д. достаточно данное число умножить на 100, 1000, 10000 и т.д. и полученный результат разделить на 4. Или: сначала данное число разделить на 4, затем полученное частное умножить на 100, 1000, 10000 и т.д.
1)36х25=(36:4)х100=900;
2)37х25=(36:4)х100+25=925;
3)84х250=(84:4)х(250х4)=21х1000=21000
.
3.Умножение на 125, 1250 и т.д.
При умножении числа на 125, 1250 и т.д. данное число умножают на 1000, 10000 и т.д., полученное произведение делят на 8. Или: данное число делят на 8 и полученное частное умножают на 1000, 10000 и т.д.
72х125 = (72: 8)х(125х8) = 9х1000 = 9000, или
72х125 = 72х(100 + 25) =72х 100 + 72: 4х100 = 7200 + 1800 = 9000

Известно, что если делимое и делитель увеличить или уменьшить в одинаковое число раз, то частное не изменится. На этом свойстве основывается применение сокращенных способов деления на 5, 25, 125 и на другие числа, представляющие какую-либо часть числа, изображенного единицей с нулями.
4. Деление на 5, 50, 500 и т.д.
Деление числа на 5, 50, 500 и т.д. заменяется делением на 10, 100, 1000 и т.д. с последующим умножением на 2. Или: делимое умножается на 2 и полученное произведение делится на 10, 100, 1000 и т.д.
1) 8740: 5 = (8740: 10)х2 = 874х2 = 1748;
2) 197500: 50 = (197500: 100)х2 = 3950;
5.Деление на 25, 250 и т.д.
При делении числа на 25, 250 и т.д. достаточно разделить его на 100, 1000 и т.д. и полученное частное умножить на 4. Или: сначала делимое умножить на 4, а потом полученное произведение разделить на 100, 1000 и т.д.
14200: 25 = (14200: 100)х4 = 142х4 = 568;
6.Деление на 125, 1250 и т.д.
При делении числа на 125, 1250 и т.д. достаточно разделить его на 1000, 10000 и т.д. и полученное частное умножить на 8. Или: сначала делимое умножить на 8, а потом полученное произведение разделить на 1000, 10000 и т.д.
1) 35000: 125 = (35000: 1000)х8 = 35х8 = 280;
2) 32250: 125 = (32250х8): (125х8) = 258000: 1000 = 258.

7.Умножение на 11 и на 111
а) 32 х 11 = 32 х 10 + 32 = 352

б) раздвигаем цифры 3 и 2 вставляем между ними их сумму: 3 5 2
в) при умножении на 111, допустим 25:
•раздвигаем цифры множимого;
•находим их сумму;
•вписываем её уже 2 раза:
25 х 111 = 2 7 7 5
Если сумма цифр двузначного числа больше 10, то делаем так:
•число десятков множимого увеличиваем на 1,
•раздвигаем десятки и единицы
•вписываем единицы суммы десятков и единиц множимого:
78 х 11 = (7+1) (7+8) 8 = 8 15 8 = 858
г) чтобы умножить трёхзначное число на 11, нужно:
•число сотен и единиц оставить на своих местах
•приписать сумму сотен и десятков множимого
•приписать сумму десятков и единиц
115х11=1(1+1)(1+5)5=1265


8.Умножение чётных чисел на 15
Делим число на 2 и прибавляем к искомому числу, затем всё умножаем на 10. Этот приём действует только для чётных чисел. Например:
14 х 15 = (14 : 2 + 14) х 10 = 21 х 10 = 210
26 : 15 = (26 : 2 + 26) х 10 = 39 х 10 = 390
Нечётные представлены в виде суммы слагаемых
23 х 15 = (22 + 1) х 15 = (22 : 2 + 22) х 10 +15 = 330 +15 = 345


9.Округление одного из сомножителей.
Если один из двух сомножителей увеличить или уменьшить на несколько единиц, то произведение соответственно увеличится или уменьшится на число, равное произведению другого сомножителя на прибавляемое или вычитаемое число единиц.
Рассмотрим четыре случая сокращенного умножения, основанных на этом свойстве.
а) Округляем множимое до разрядного числа, отнимая от него несколько единиц , затем умножаем отдельно разрядное число и отнятые единицы на множитель и полученные произведения складываем.
902х7=(900+2)х7=6300+2х7=6314.
б) Округляем множимое до разрядного числа, прибавляя несколько единиц умножаем отдельно разрядное число и прибавленные единицы на множитель и из первого произведения вычитаем второе произведение.
397х4=(400-3)х4=400х4-3х4=1600-12=1588.
в) Округляем множитель до разрядного числа, уменьшая его на несколько единиц, затем отдельно умножаем множимое на разрядное число и на отнятые единицы и полученные произведения складываем.
28х1004=28х(1000+4)=28х1000+28х4=28112.
При умножении на 15 умножают на 10 и прибавляют половину полученного произведения:
468х15=468х(10+5)=468х10+(468х10:2)=4680+2340=7020
При умножении на 150 умножают на 100 и прибавляют половину полученного произведения:
18х150=18х100+18х10:2=1800+1800:2=2700
При умножении на 11 данное число умножают на 10 и к полученному произведению прибавляют данное число:
57х11=57х(10+1)=57х10+57=570+57=627
г) Округляем множитель до разрядного числа, увеличивая его на несколько единиц , затем умножаем множимое отдельно на разрядное число и на прибавленные единицы множителя и из первого произведения вычитаем второе произведение.
42х98=42х(100-2)=42х100-42х2=4200-84=4116
К этому способу сокращенного умножения подходит умножение на 9; 99; 999; 19; 29; 39; 49; 69; 79; 89; и т.п. При умножении на 9; 99; 999 и т.п. умножают данное число на 10; 100; 1000 и т.п. и из полученного произведения вычитают данное число.
1)345х9=345х(10-1)=345х10-345=3450-345=3105;
2)46х99=46х(100-1)=46х100-46=4600-46=4554.
При умножении на 19; 29; 39; 49; 59; 69; 79; 89 данное число умножают на 20; 30; 40; 50; 60; 70; 80 и 90 и из полученного произведения вычитают данное число.
1)48х19=48х20-48=960-48=912;
2)14х69=14х70-14=980-14=966;
10. Используя этот приём, можно умножать на 16 и 14 - (15 +1) и (15 - 1):
66 х 16 = 66 х (15 + 1) = (66 : 2 + 66) х 10 + 66 = 1156
11. Умножения чисел, оканчивающихся на 5, самих на себя
35 х 35 = 3 х 4 и приписываем 5 х 5, т.е. 35 х 35 = 1225 

Скажите, пожалуйста, как рациональнее сложить 1+ 7, 4 * 8 ? Какие законы применили? 27 + 46+13 ? 27 – 19 – 7 ? Какие свойства, законы? Т.е основы рациональных приёмов вычислений основаны на чём?

Методика преподавания математики в начальных классах раскрывает основы рациональных приёмов вычислений, связанных с выполнением разных математических действий с натуральными числами.

Рациональные приёмы сложения основываются

Коммуникативный закон сложения а +в =в +а

Ассоциативный закон сложения а+в+с = а+ (в+с)

на коммуникативном и ассоциативном приёмах сложения, а так же свойствах изменения суммы. Рассмотрим некоторые из них.

Свойства сложения.

1.1

а+в+с =У, то (а – к) +с+в = У –к

38+24+15 = 77, то 36+ 24+ 15 = ?

а+в+с=У , то (а+ к) +в +с = У+к

38 + 24+15 = 77, то 40+ 24 + 15 =?

1.2.

а+ в =С , то (а +к ) + (в – к) = С

56 + 27 = 83, то (56 + 4) + (27 – 4) = ?

Какие ещё рациональные приёмы сложения можно применить на уроке математики?

Округление одного из слагаемых, поразрядного сложения, приём группировки вокруг одного и того же « корневого» числа.

Рассмотрим эти приёмы: 13 + 49 + 76 + 61 = (поразрядное сложение)

38 + 59 = 38 + (…округление слагаемого)

26 + 24 + 23 +25 + 24 = ( группировка вокруг одного и того же « корневого» числа

Все приёмы рациональных вычислений, связанных с вычитанием, основываются на законах вычитания.

  1. Если уменьшаемое увеличить или уменьшить на число, то соответственно разность увеличится или уменьшится на это же самое число

а – в = С, то ( а +к) - в = С +к

74 – 28 = 46, то 77 – 28 = 49

а-в = С , то (а –к )- в = С-к

74 – 28 = 46, то 71 – 28 = 43

  1. Если вычитаемое увеличить или уменьшить на несколько единиц, то разность измениться в противоположную сторону.

  2. Если уменьшаемое и вычитаемое уменьшить или увеличить на одно и тоже число, то разность не измениться.

Найди верные равенства

229 – 36 = (229 – 9 ) – ( 36 – 6)

174 – 58 = (174 – 4) – ( 58 – 4)

358 – 39 = ( 358 – 8 ) – (39 – 8)

617 – 48 = ( 617 – 7 ) – (48 – 8)

Для рациональных вычислений используют частичные приёмы умножения и деления.

Приём замены множителя или делителя на произведение.

75 * 8 = 75 * 2*2*2=

960 : 15 = 960 : 3 : 5 =

Приём умножения на 9, 99,999, 11 …

87 * 99 = 87 * 100- 87 = 8700 – 87 =8613

87 * 11 = 87 *10 + 87 = 870+ 87 = 957

Успешное применение различных приёмов зависит от умения подмечать особенности чисел и их сочетаний. Например, познакомив детей в первом классе с натуральным рядом чисел и имея его перед глазами, легко закрепить состав числа.

( слайд) 0 1 2 3 4 5 6 7

Отработав, таким образом, состав чисел в пределах 10 и познакомившись с переместительным законом сложения, дети легко справляются с заданием найти сумму чисел в пределах 10, а в дальнейшем, используя переместительное и сочетательное свойство сложения, легко можно найти сумму других чисел. Например:

48 +14 +22 +36 =120

Существуют приёмы на знаниях некоторых свойств чисел или результатов действий. Легко находить сумму последовательных нечётных чисел, начиная с 1

Она равна произведению количества слагаемых на самого себя.

Рационализация может осуществляться за счет возможности выполнять некоторые арифметические действия. Для этого очень важно научить детей внимательно рассматривать условия задания, суметь подметить все его особенности. Такие задания, как , (поставь нужный знак действия16 … 17 = 33 ( рассуждать), далее подобные задания усложняются. 8…6…33 = 15

Сравни, не вычисляя 2+2+2 … 2*3

51 : 3 … 30 : 3 + 21 :5

636 :6 … 600 : 6+ 30 : 6+ 6 :6

Задания могут даваться в занимательной форме: Математический лабиринт, составь слово, найди пару , расшифруй пословицу и т.д.

Используй рациональные приёмы вычисления, разгадай слово

18 *9 = 24 +29 = 21 *11=

53 – М 162 – И 231 – Р

Какие приёмы использовали?

Важно показать ученикам красоту и изящество устных вычислений, используя разнообразные вычислительные приёмы, помогающие значительно облегчить процесс вычисления.

СЧЁТ НА ПАЛЬЦАХ: способ быстрого умножения чисел первого десятка на 9 Допустим нам надо умножить 7 на 9. Повернём ладошки к себе, загнём седьмой палец, число пальцев слева от загнутого пальца – это число десятков, а число – справа, количество единиц.

Все задания, которые мы рассматривали, воспитывают интерес к математике, развивают их математические способности.

Все рациональные приёмы на уроках математики невозможно охватить, поэтому можно продолжать работать над этим на математическом кружке.

     Одно из самых важных умений человека – это умение быстро и правильно выполнять вычисления.

            Рационализация вычислений означает выполнение вычислений более лёгким, более целесообразным способом.

            Устные вычисления способствуют активизации мыслительной деятельности, развитию логического мышления, сообразительности, памяти, творческих начал и волевых

 качеств. Способность к умственному (устному) счёту полезна

в отношении практическом и, как средство, для здоровой умственной гимнастики.

 

1.       Приём, основанный на использовании свойств

     арифметических действий.

·       89 + 67 + 11 = 89 + 11 + 67 = 167

·       357 + 996 + 48 = 357 + 996 + (43 + 4 + 1) =

                   = (357 + 43) + (996 + 4) + 1 = 400 + 1000 +1 = 1401

·       25 × 37 ×  4 = 37 × (25 × 4) = 37 × 100 =3700

·       87 × 4 + 4 × 13 = (87 + 13) × 4 = 100 × 4 = 400

·       367 : 5 – 167 : 5 = ( 367 – 167) : 5 = 200 : 5 = 40

 

2.     Приём округления.

·       399 + 473 = 400 +472 = 872

·       497 + 196 + 299 = 492 + 200 + 300 = 992

·       196 + 199 + 197 = 200 × 3 – 8 = 592

·       752 – 298 = 754 – 300 = 454

·       134 + 27 + 29 + 38 = 150 + 20 + 30 + 37 = 200 + 37 = 237

·       427 + 28 + 7 + 20 + 652 = 430 + 649 + 30 + 5 + 20 =

                                             = 1079 + 1 + 54 = 1080 + 20 + 34 = 1134

·       198 × 3 = (200 – 2) × 3 = 600 – 6 = 594

·       35 × 18 = 35 × (20 – 2) = 700 – 70 = 630

 

3.     Приём, основанный на зависимости результата от

     изменения компонентов действий.

·       56 – 38 = 60 – 42 = 18

·       225 : 75 = (225   2) : (75   2) = 450 : 150 = 3

·       440 : 55 = 880 : 110 = 8

·       364 : 6 + 118 : 3 = 364 : 6 + 236 : 6 = (364 + 236) : 6 = 600 : 6 = 100

                                                                                              

4.     Приёмы последовательного умножения и деления.

·       75 × 8 = 75 × 2 × 2 × 2 = 150 × 2 × 2 = 300 × 2 = 600

·       35 × 18 = 35 × 2 × 9 = 70 × 9 = 630

·       23 × 55 = 23 × (5 × 11) = 115 × 11 = 1150 + 115 = 1 265

·       540 : 4 = (540 : 2) : 2 = 270 : 2 = 135

·       960 : 15 = (960 : 3) : 5 = 320 : 5 = 64

 

5.    Приёмы умножения и деления на  5,  50,  500,  25,  250,  15, 125.

·        36 × 5 = (36 : 2) × 10 = 180

·        826 × 50 = (826 : 2) × 100 = 41 300

·        84 × 25 = (84 : 4) × 100 = 2 100

·        24 × 15 = 12 × 30 = 360

·       496 × 125 = (496 : 8) × 1000 = 62 000

·       4 340 : 5 = (4 340 : 10) × 2 = 868

·       4 000 : 125 = (4 000 × 8) : (125 × 8) = 32 000 : 1 000 = 32

 

6.     Приёмы умножения на 9,  99,  11,  101.  1001.

 

·       26 × 9 = 25 × (10 – 1) = 250 – 25 = 225

·       35 × 99 = 3 500 – 35 = 3 465

·       37 × 11 = 37 × (10 + 1) = 370 + 37 = 407

·       73 × 101 = 7 300 + 73 = 7 373

·       735 × 1 001 = 735 000 + 735 = 735 735

 

 Вывод:   Так, наблюдая и выявляя свойства чисел и действий над

         ними, ученики накапливают сведения и используют их затем при

         вычислениях.  Овладение некоторыми приёмами рациональных

         вычислений готовит детей к успешному изучению математики в

         средней школе.

 

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/548202-racionalnye-priemy-vychislenij-na-urokah-mate

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

Комментарии
Есть такая фраза - "Математика - гимнастика ума". И в ней сказано очень многое. Развивая вычислительные навыки ребёнок развивает свой ум. Он умеет быстро проводить вычисления, подобрать более лёгкий способ решения. У ребёнка отлично развивается логическое мышление. Очень актуальная работа.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки