Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
07.01.2015

Методическая разработка самостоятельной работы по теме: «Случайные величины»

Попова Лариса Анатольевна
преподаватель математики
Методическая разработка содержит теоретический материал и практические задания для самостоятельной работы по теме «Случайные величины» из курса алгебры. Основная цель — научиться находить числовые характеристики случайной величины: математическое ожидание, дисперсию и среднее квадратическое отклонение. Пособие включает подробные примеры решения задач и разноуровневые упражнения для закрепления навыков. Материал помогает систематизировать знания и подготовиться к контрольным работам и экзаменам. Подходит для учащихся старших классов и студентов, изучающих теорию вероятностей.

Содержимое разработки

Самостоятельная работа по теме:  «Случайные величины»

Цели:

В результате прохождения занятия студент должен:

знать:

виды случайных событий;

закон распределения случайной величины;

числовые характеристики случайной величины;

уметь:

применять формулы для решения задач;

Например при бросании игральной кости могли появится числа 1,2,3,4,5 и 6. Наперед определить число выпавших очков невозможно, поскольку оно зависит от многих случайных причин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная; числа 1,2,3,4,5 и 6 есть возможные значения этой величины.

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

Случайные величины прописными буквами X,Y,Z, а их возможные значения соответствующими строчными буквами x,y,z. Например, если случайная величина X имеет три возможных значения, то они будут обозначены так: x1,x2,x3.

Случайной называют величину, которая в результате испытания примет случайно одно и только одно значение из множества возможных значений.

Дискретной (прерывной) называют случайную величину, которая принимает отдельные возможные значения с определенными вероятностями.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Пример 1. Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента

В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M={1, 2, 3, 4, 5, 6}; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I=[1000, 3000]).

Закон распределения

Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями (его можно задать таблично, аналитически (в виде формулы) и графически.

Разобрать пример:

Найти дисперсию случайной величины X, которая задана следующим законом распределения:

Х235

p0,10,60,3

Решение. По формуле (3.1) находим математическое ожидание:

M (X) = 2*0,1 + 3*0,6 + 5*0,3 = 3,5.

Закон распределения случайной величины X2:

Х24925

p0,10,60,3

Математическое ожидание М(Х2):

M (X) = 4*0,1 + 9*0,6 + 25*0,3 = 13,3.

По формуле (3.4) находим дисперсию:

D (X) = 13,3 - (3,5)2 = 1,05.

Средним квадратичным отклонением случайной величины Х называется корень квадратный из ее дисперсии:

Задания:

Возможные значения случайной величины таковы: x1 = 2, x2 = 5, x3 = 8. Известны вероятности первых двух возможных значений: p1 = 0,4, p2 = 0,15. Найти вероятность x3. Математическое ожидание и дисперсию дискретной случайной величины.

Найти математическое ожидание и дисперсию дискретной случайной величины, зная ее закон распределения:

Х

6

3

1

p

0,2

0,3

0,5

Случайная величина задана законом распределения:

Х

2

4

8

p

0,1

0,5

0,4

Найти среднее квадратичное отклонение этой величины

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/91720-metodicheskaja-razrabotka-samostojatelnoj-rab

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки