Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
16.08.2015

Рабочая программа по геометрии 7-9 по учебнику А. В. Погорелова

Рабочая программа по геометрии 7-9 по учебнику А.В. Погорелова в соответствии с ФГОС ООО и календарно-тематическое планирование для 7 класса

Содержимое разработки

*



Муниципальное общеобразовательное учреждение – средняя общеобразовательная школа № 3 г. Маркса Саратовской области им. Л.Г. Венедиктовой

«Рассмотрено»

Руководитель ШМО

_____________/_________/

Протокол № _1__

от «__»_________201_г.

«Согласовано»

Заместитель директора по УВР

_____________/_____________/

«__»______09______201_г.

«Утверждаю»

Директор

МОУ-СОШ № 3 г. Маркса _____________/Горбунова Н.В./

Приказ № ___

от «__»__________201_г.

РАБОЧАЯ ПРОГРАММА ПЕДАГОГА

по геометрии 7-9 класс;

учителя математики высшей категории Матвеевой Елены Владимировны

2014 - 2018

г. Маркс

Пояснительная записка

Рабочая программа по геометрии – это нормативно-правовой документ, который является составной частью основной образовательной программы основного общего образования МОУ СОШ № 3 г. Маркса Саратовской области им. Л.Г. Венедиктовой и учитывает:

требования Федерального государственного образовательного стандарта нового поколения;

требования к планируемым результатам обучения выпускников;

требования к содержанию учебных программ;

принцип преемственности общеобразовательных программ;

объем часов учебной нагрузки, определенный учебным планом МОУ СОШ № 3 г.;

цели и задачи образовательной программы основного общего образования МОУ СОШ № 3 г.;

когнитивные особенности и познавательные интересы учащихся.

Рабочая программа по математике составлена на основе:

- Федерального Государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки РФ от 17.12. 2010г. №1897;

- Примерной программы по математике 5-9 классы разработанной А.А.Кузнецовым, М.В. Рыжаковым, А.М.Кондаковым – М.: Просвещение, 2011;

- Основной образовательной программы основного общего образования МОУ СОШ № 3 г. Маркса Саратовской области им. Л.Г. Венедиктовой

Данная рабочая программа ориентирована на учащихся 7-9 общеобразовательных классов муниципального общеобразовательного учреждения – средней общеобразовательной школы №3. Срок реализации 2014-2018 г. В основу программы положены деятельностно ориентированные педагогические и дидактические принципы. Программа является логическим продолжением курса математики 5-6 класса.Предмет «Геометрия» входит в образовательную область «Математика и информатика».

Курс, соответствующий этой программе, изложен в опубликованном издательством «Просвещение» учебнике геометрии А.В. Погорелов 7-9класс, М.: Просвещение, 2013 год. Этот учебник входит в Федеральный перечень учебников 2014 – 2015 учебного года, рекомендован Министерством образования и науки Российской Федерации, соответствует Федеральному государственному образовательному стандарту основного общего образования.

Изучение геометрии в 7-9 классе направлено на достижение следующих целей:

IВнаправлении личностного развития:

формирование представлений о математике, как части общечеловече­ской культуры, о значимости математики в раз­витии цивилизации и современ­ного общества;

развитие логического и критического мышления, куль­туры речи, способно­сти к умствен­ному эксперименту;

формирование интеллектуальной честности и объектив­ности, способно­сти к преодоле­нию мыслительных стереоти­пов, вытекающих из обыденного опыта;

воспитание качеств личности, обеспечивающих соци­альную мобиль­ность, способ­ность принимать самостоятель­ные решения;

формирование качеств мышления, необходимых для адаптации в современ­ном информа­ционном обществе;

развитие интереса к математическому творчеству и ма­тематических способ­ностей;

IIВметапредметном направлении:

развитие представлений о математике как форме опи­сания и методе позна­ния действи­тельности, создание условий для приобретения первоначаль­ного опыта математиче­ского моделирования;

формирование общих способов интеллектуальной дея­тельности, характер­ных для мате­матики и являющихся осно­вой познавательной куль­туры, значимой для различных сфер человеческой деятельности;

IIIВ предметном направлении:

•овладение математическими знаниями и умениями, не­обходимыми для про­долже­ния образования, изучения смеж­ных дисциплин, применения в повсе­дневной жизни;

• создание фундамента для математического развития, формирования меха­низмов мышле­ния, характерных для мате­матической деятельности.

Задачи:

овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

воспитывать культуру личности, отношение кматематики как части общечеловеческой культуры, играющей особую роль в общественном развитии.

С учетом требований Федерального государственного образовательного стандарта основного общего образования проектирование, организация и оценка результатов образования осуществляется на основе системно-деятельностного подхода, который обеспечивает:

формирование готовности учащихся к саморазвитию и непрерывному образованию;

проектирование и конструирование развивающей образовательной среды образовательной организации;

активную учебно-познавательную деятельность учащихся;

построение образовательного процесса с учетом индивидуальных, возрастных, психологических, физиологических, особенностей здоровья обучающихся.

Таким образом, системно-деятельностный подход ставит своей задачей ориентировать ученика не только на усвоение знаний, но, в первую очередь, на способы этого усвоения, на способы мышления и деятельности, на развитие познавательных сил и творческого потенциала ребенка. В связи с этим, во время учебных занятий учащихся необходимо вовлекать в различные виды деятельности (беседа, дискуссия, экскурсия, творческая работа, исследовательская (проектная) работа и другие), которые обеспечивали бы высокое качество знаний, развитие умственных и творческих способностей, познавательной, а главное самостоятельной деятельности учеников.

Межпредметные учебные умения, которыми должны овладеть ученики:

- читать со скоростью 130 слов в минуту и понимать прочитанное;

- грамотно переписывать в тетрадь 16-18 слов в минуту;

- самостоятельно выделять главное в тексте и совместно оформлять его в виде схемы, таблицы, конспекта, реферата;

- самостоятельно изменять, дополнять и составлять устный и письменный текст;

- совместно составлять и изменять алгоритмы правил для выполнения творческих заданий;

- самостоятельно выполнять задания на отдельных уроках по каждой теме;

- самостоятельно планировать, работать, анализировать и оценивать результаты деятельности на отдельных уроках по темам.

ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА

Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстракции изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет начать работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умение учащихся вычленять геометрические факты и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение не только математических предметов, но и смежных дисциплин. Цель содержания курса «Геометрия»— развить у учащих­ся пространствен­ное воображе­ние и логическое мышление пу­тем систематиче­ского изучения свойств геометриче­ских фигур на плоскости и в пространстве и применения этих свойств при реше­нии задач вычислительного и конструктив­ного характера. Существенная роль при этом отводится разви­тию геометри­ческой интуиции. Сочетание наглядности со строго­стью явля­ется неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значи­тельной степени несет в себе меж­предметные знания, кото­рые находят применение, как в различных математи­ческих дисципли­нах, так и в смежных предметах.

В курсе геометрии можно выделить следующие содержательно-методические линии: «Геометрические фигуры», «Измерение геометрических величин».

Линия «Геометрические фигуры» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей модели для описания окружающей реальности, а также способствует развитию логического мышления путем систематического изучения свойств геометрических фигур на плоскости и применении этих свойств при решении задач на доказательство и на построение с помощью циркуля и линейки.

Содержание раздела «Измерение геометрических величин» нацелено на приобретение практических навыков, необходимых в повседневной жизни, а также способствует формированию у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах.

Курс, соответствующий этой программе, изложен в опубликованном издательством «Просвещение» учебнике геометрии А.В. Погорелов 7-9класс, М.: Просвещение, 2009 год.

Изучение программного материала ставит перед учащимися следующие задачи:

осознать,что геометрические формы являются идеализированными образами реальных объектов;

научитьсяиспользовать геометрический язык для описания предметов окружающего мира;

получитьпредставленияо некоторых областях применения геометрии в быту, науке, технике, искусстве;

усвоитьсистематизированные сведения о плоских фигурах и основных геометрических отношениях;

приобрестиопытдедуктивных рассуждений: уметь доказывать основные теоремы курса, проводить доказательные рассуждения в ходе решения задач;

научитьсярешать задачина доказательство, вычисление и построение;

овладетьнабором эвристик, часто применяемых при решении планиметрических задач на вычисление и доказательство (выделение ключевой фигуры, стандартное дополнительное построение, геометрическое место точек и т. п.);

приобрестиопытприменения аналитического аппарат (алгебраические уравнения и др.) для решения геометрических задач.

Целями изучения курса геометрии является:

7 класс

систематическое изучение свойств геометрических фигур на плоскости;

формирование пространственных представлений;

развитие логического мышления и подготовки аппарата, необходимого для изучения смежных дисциплин (физика, черчение и т.д.) и курса стереометрии в старших классах.

8 класс

развивать пространственное мышление и математическую культуру;

учить ясно и точно излагать свои мысли;

формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности, доводить начатое дело до конца;

помочь приобрести опыт исследовательской работы.

9класс

усвоить признаки подобия треугольников и отработать навыки их применения;

познакомить учащихся с основными алгоритмами решения произвольных треугольников;

расширить и систематизировать сведения о многоугольниках и окружностях.

сформировать у учащихся общее представление о площади и умение вычислять площади фигур;

дать начальное представление о телах и поверхностях в пространстве, о расположении прямых и плоскостей в пространстве.

Обобщающее повторение (18 ч)

Формы работы: беседа, рассказ, лекция, диспут, экскурсия (путешествие), дидактическая игра, дифференцированные задания, взаимопроверка, практическая работа, самостоятельная работа, фронтальная, индивидуальная, групповая, парная.

Методы работы: объяснительно-иллюстративный, репродуктивный, проблемный, эвристический, исследовательско-творческий, модельный, программированный, решение проблемно-поисковых задач.

Методы контроля усвоения материала: фронтальная устная проверка, индивидуальный устный опрос, письменный контроль (контрольные и практические работы, тестирование, письменный и устный зачет, тесты).

Учебный процесс осуществляется в классно-урочной форме в виде уроков «открытия» нового знания,уроков общеметодологической направленности, уроков рефлексии и развивающего контроля.

Формы организации учебного процесса:индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные.

Формы контроля: самостоятельная работа, контрольная работа, наблюдение, работа по карточке.

Виды организации учебного процесса:самостоятельные работы, контрольные работы.

Оценка планируемых результатов

Система оценки достижения планируемых результатов освоения основной образователь­ной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучаю­щимися всех трёх групп результатов образования: личностных, метапредмет­ных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструмента­рию для оценки достижения планируемых результатов, а также к представле­нию и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образователь­ных достижений на основе «метода сложения», при котором фиксируется дости­жение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индиви­дуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

 Особенности оценки предметных результатов

Оценка предметных результатовпредставляет собой оценку достижения обучающимся планируемых результатов по отдельным предметам.

Основнымобъектом оценки предметных результатов является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.

Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода предполагает выделениебазового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с учащимися.

Реальные достижения учащихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.

Для оценки предметных результатов в 7-9 классах используется 10-ти балльная шкала отметок, соотнесенная с уровнями освоения предметных знаний.

Устанавливается пять уровней достижений учащихся:

1.Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующем уровне образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (4-5 баллов).

2.Повышенныйуровень(уровень достижений выше базового) достижения планируемых результатов свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов и соответствует оценке «хорошо» (6-7 баллов);

3.Высокий уровень(уровень достижений выше базового) достижения планируемых результатов отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области, оценка «отлично» (8-10 баллов).

выделяется два уровня:

4.Пониженный уровеньровень достижений ниже базового) достижений, оценка «неудовлетворительно» (2-3 балла);

5. Низкий уровеньровень достижений ниже базового) достижений, оценка «плохо» (1 балл).

Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.

Индивидуальные траектории обучения учащихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих учащихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие учащиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.

Пониженный уровень достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что учащимся не освоено даже и половины планируемых результатов, которые осваивает большинство учащихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом учащийся может выполнять отдельные задания повышенного уровня. Данная группа учащихся требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.

Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Учащимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы учащихся.

Описанный выше подход применяется в ходе различных процедур оценивания: текущего, промежуточного и итогового.

Обязательными составляющими системы накопленной оценки являются материалы:

• стартовой диагностики;

• тематических и итоговых проверочных работ;

•  творческих работ, включая учебные исследования и учебные проекты.

Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. Критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня.

Уровни подготовки учащихся и критерии успешности обучения

1 – очень слабо

- Присутствовал на занятии, слушал, записывал под диктовку учителя и товарищей, переписывал с доски.

2 – слабо

- Отличает объекты от аналогов только тогда, когда ему их предъявляют в готовом виде.

3 – посредственно

- Запомнил большую часть правил, определений, формулировок, законов, но объяснить ничего не может. В подходе к решению задач преобладает спонтанность.

4 – удовлетворительно

Демонстрирует полное воспроизведение изученных математических правил, формулировок и формул, однако затрудняется в пояснении. Умеет решать простейшие, стандартные задачи по теме, но часто допускает вычислительные ошибки.

5 – недостаточно хорошо

- Объясняет отдельные положения теории, иногда выполняет такие мыслительные операции, как анализ и синтез, решает только те задачи, где ему известен алгоритм.

6 – хорошо

Отвечает на большинство вопросов по содержанию, демонстрируя осознанность теоретических знаний, проявляет способность к самостоятельным выводам. Не задумываясь решает задачи по алгоритму, очень редко допускает вычислительные ошибки.

7 – очень хорошо

Четко и логично излагает теоретический материал, свободно владеет понятиями и терминологией, способен к обобщению, хорошо видит связь теории с практикой. При решении задач в большинстве случаев использует четко осознанные действия. Вычислительные ошибки крайне редки.

8 – отлично

Полностью понимает суть теории, применяет ее на практике, не особенно задумываясь. Иногда допускает ошибки, которые сам находит и исправляет. При решении задач наблюдаются четко осознанные действия.

9 – великолепно

Легко выполняет задания на творческом уровне, свободно оперирует теорией в практической деятельности, не допуская вычислительных ошибок.

10 - прекрасно

Творчески применяет полученные знания на практике, самостоятельно формирует новые умения на базе полученных знаний. Умеет самостоятельно формировать знания из различных источников информации (учебник, компьютер, книга).

Общая классификация ошибок.

При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

незнание наименований единиц измерения;

неумение выделить в ответе главное;

неумение применять знания, алгоритмы для решения задач;

неумение делать выводы и обобщения;

неумение пользоваться первоисточниками, учебником и справочниками;

вычислительные ошибки, если они не являются опиской;

логические ошибки.

Кнегрубым ошибкам следует отнести:

неточность формулировок, определений, понятий теории, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

нерациональные методы работы со справочной и другой литературой;

неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

нерациональные приемы вычислений и преобразований;

небрежное выполнение записей, чертежей.

Контроль предметных результатов предлагается при проведении математических диктантов, тестирования, практических ра­бот, самостоятельных работ обучающего и контролирующего вида, контрольных работ.

МЕСТО КУРСА ГЕОМЕТРИИ В УЧЕБНОМ ПЛАНЕ

Предмет «Геометрия» входит в образовательную область «Математика и информатика».

Учебный (образовательный) план МОУ СОШ №3 на изучение геометрии в 7-9 классах основной школы отводит 2 учебных часа в неделю в течение 35 недель обучения, всего по 70 ч в год, итого 210 часов.

ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:

личностные:

формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;

формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

креативность мышления, инициативу, находчивость, активность при решении геометрических задач;

умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

регулятивные универсальные учебные действия:

умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;

умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;

понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

познавательные универсальные учебные действия:

осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

коммуникативные универсальные учебные действия:

умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;

умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;

слушать партнера;

формулировать, аргументировать и отстаивать свое мнение;

предметные:

Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаим­ного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фи­гуры и их конфи­гурации;

• находить значения длин линейных элементов фигур и их отношения, гра­дусную меру углов от 0° до 180°, применяя определения, свойства и при­знаки фигур и их элемен­тов, отношения фигур (равенство, подобие, симмет­рии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элемен­тарные опера­ции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фи­гур и отноше­ний между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алго­ритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от против­ного, методом подобия, методом перебора вариан­тов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометриче­ского аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помо­щью циркуля и ли­нейки: анализ, построение, доказательство и исследова­ние;

• научиться решать задачи на построение методом геометрического места точек и мето­дом подобия;

• приобрести опыт исследования свойств планиметрических фигур с по­мощью компьютер­ных программ;

• приобрести опыт выполнения проектов по темам «Геометрические пре­образования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при реше­нии задач на нахожде­ние длины отрезка, длины окружности, длины дуги окруж­ности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кру­гов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя фор­мулы длины ок­ружности и длины дуги окружности, формулы площадей фи­гур;

• решать задачи на доказательство с использованием формул длины окруж­ности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометриче­ских величин (исполь­зуя при необходимости справочники и технические сред­ства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольни­ков, параллело­граммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновелико­сти и равносос­тавленности;

• применять алгебраический и тригонометрический аппарат и идеи движе­ния при реше­нии задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять коорди­наты сере­дины отрезка;

• использовать координатный метод для изучения свойств прямых и окруж­ностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и дока­зательства;

• приобрести опыт использования компьютерных программ для ана­лиза частных слу­чаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение коорди­натного метода при решении задач на вычисления и доказатель­ства».

Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, задан­ных геометри­чески, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, коорди­наты суммы и разности двух и более векторов, координаты произведе­ния вектора на число, применяя при необходимости сочетатель­ный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векто­рами, устанавли­вать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и дока­зательства;

• приобрести опыт выполнения проектов на тему «применение вектор­ного метода при ре­шении задач на вычисления и доказательства».

В результате изучения геометрии ученик должен:

в 7 классе

понимать существо понятия математического доказательства; некоторые примеры доказательств;

понимать каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики.

пользоваться языком геометрии для описания предметов окружающего мира

распознавать изученные геометрические фигуры, различать их взаимное расположение

изображать изученные геометрические фигуры, выполнять чертежи по условию задач

вычислять значение геометрических величин: длин и углов.

решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования

проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

описания реальных ситуаций на языке геометрии;

решения простейших практических задач, связанных с нахождением геометрических величин (использую при необходимости справочники и технические средства);

построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

в 8 классе

понимать, что геометрические формы являются идеализи­рованными образами реальных объектов; научиться использовать геометрический язык для описания предметов окружающего мира; получить представление о некоторых областях применения геометрии в быту, науке, технике, искусстве;

распознавать на чертежах и моделях геометрическиефигуры (отрезки; углы; треугольники и их частные виды; че­тырехугольники и их частные виды; многоугольники; окружность; круг); изображать указанные геометрические фигуры; выполнять чертежи по условию задачи;

владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;

решать задачи на вычисление геометрических величин, (длин, углов, площадей), применяя изученные свойства фигур и формулы и проводя аргументацию в ходе решения задач;

решать задачи на доказательство;

владеть алгоритмами решения основных задач на по­строение.

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

описания реальных ситуаций на языке геометрии;

решения простейших практических задач, связанных с нахождением геометрических величин (использую при необходимости справочники и технические средства);

построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

в 9 классе

пользоваться геометрическим языком для описания предметов окружающего мира;

распознавать геометрические фигуры, различать их взаимное расположение;

изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;

распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

в простейших случаях строить сечения и развертки пространственных тел;

проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для улов от 0° до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

решать простейшие планиметрические задачи в пространстве.

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

описание реальных ситуаций на языке геометрии;

расчетов, включающих простейшие тригонометрических формулы;

решения геометрических задач с использованием тригонометрии;

решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

СОДЕРЖАНИЕ ТЕМ КУРСА ГЕОМЕТРИИ

Прямые и углы(15ч)

Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, раз­вернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свой­ства углов с параллельными и перпендикуляр­ными сторонами. Взаимное расположение прямых на плоскости: парал­лельные и пересекающиеся прямые. Перпенди­кулярные прямые. Теоремы о парал­лельности и перпендикулярности пря­мых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Метод геометрических мест точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

2.Треугольники (65ч.)

Треугольники. Прямоугольные, остро­уголь­ные и тупоугольные треуголь­ники. Вы­сота, медиана, биссек­т­риса, средняя линия треугольника. Равно­бедренные и равносторон­ние тре­угольники; свойства и при­знаки равнобед­ренного треугольника.

Признаки равенства треугольников. При­знаки ра­венства прямоугольных тре­угольни­ков. Неравенство треуголь­ника. Соотноше­ния между сторонами и угла­ми треугольника. Сумма углов тре­угольника. Внешние углы треугольника, теорема о внешнем угле треуголь­ника. Теорема Фалеса. Подобие тре­угольни­ков; коэф­фициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тан­генс, ко­тангенс острого угла прямо­угольного треугольника и углов от 0 до 180°; приведе­ние к острому углу. Реше­ние прямоугольных треугольников. Ос­новное тригоно­метриче­ское тождество. Формулы, связывающие си­нус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: тео­рема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересе­чения серединных перпенди­куляров, биссектрис, ме­диан, высот и их продолжений.

3. Четырёхугольники (20ч)

Четырехугольник. Параллелограмм, тео­ремы о свойствах сторон, углов и диагона­лей парал­лелограм­ма и его при­знаки.

Прямоугольник, теорема о равенстве диа­гона­лей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равно­бедрен­ная трапеция.

4. Многоугольники (10ч)

Многоугольник. Выпуклые много­угольники. Пра­вильные многоуголь­ники. Теорема о сумме углов вы­пуклого многоугольника. Тео­рема о сумме внеш­них углов выпуклого многоугольника

5. Окружность и круг (20ч)

Окружность и круг. Центр, радиус, диа­метр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, вели­чина вписанного угла. Взаимное располо­жение прямой и окружно­сти, двух окружностей. Касательная и секу­щая к окружности, их свойства.

Вписанные и описанные многоуголь­ники. Ок­руж­ность, вписанная в треуголь­ник, и ок­ружность, опи­санная около треугольника. Тео­ремы о существо­вании окружности, вписан­ной в треугольник, и окружности, опи­санной около треугольника.

Вписанные и описанные окружности правиль­ного многоугольника.

Формулы для вычисления стороны пра­виль­ного многоугольника; радиуса окружности, вписанной в правильный многоугольник; ра­диуса окружности, опи­санной около правиль­ного много­угольника

6. Геометрические преобразования (10ч)

Понятие о равенстве фигур. Понятие движе­ния: осевая и центральная симмет­рии, парал­лельный пере­нос, поворот. По­нятие о подо­бии фигур и гомотетии.

7. Построения с помощью циркуля и линейки (5ч)

Построения с помощью циркуля и ли­нейки. Основ­ные задачи на построение: деление от­резка пополам; построение угла, равного дан­ному; построение тре­угольника по трем сторо­нам; построение перпендику­ляра к пря­мой; построение биссектрисы угла; деление отрезка на правных частей.

8. Измерение геометрических величин (25ч)

Длина отрезка. Длина ломаной. Пери­метр много­угольника.

Расстояние от точки до прямой. Расстоя­ние между параллельными пря­мыми.

Длина окружности, число π; длина дуги окруж­ности.

Градусная мера угла, соответствие ме­жду величи­ной центрального угла и дли­ной дуги окружности.

Понятие площади плоских фигур. Равно­состав­ленные и равновеликие фигуры. Пло­щадь прямоугольни­ка. Пло­щади параллело­грамма, треугольника и трапе­ции (основные формулы). Фор­мулы, выражающие площадь треуголь­ника через две стороны и угол меж­ду ними, через периметр и радиус вписан­ной окруж­ности; формула Герона. Пло­щадь много­угольника. Площадь круга и площадь сектора. Соотношение меж­ду площадями по­добных фигур.

9. Координаты (10ч)

Декартовы координаты на плоскости. Уравне­ние прямой. Координаты сере­дины отрезка. Формула рас­стояния ме­жду двумя точками плоскости. Уравне­ние окружности.

10. Векторы (10ч)

Вектор. Длина (модуль) вектора. Равен­ство векто­ров. Коллинеарные век­торы. Коорди­наты вектора. Ум­ножение вектора на число, сумма векторов, разложе­ние вектора по двум неколлинеар­ным векторам. Угол между векто­рами. Скалярное произведение век­торов.

11. Элементы логики ( 5ч)

Определение. Аксиомы и теоремы. До­казатель­ство. Доказательство от про­тивного. Теорема, обрат­ная данной. При­мер и контрпри­мер.

Резерв времени ( 15ч)

7 класс.

Основные свойства простейших геометрических фигур (13 уроков)

Смежные и вертикальные углы (9 часов)

Признаки равенства треугольников (14 часов)

Сумма углов треугольника (15 часов)

Геометрические построения (10 часов)

Повторение курса геометрии 7 класса (9 часов)

8 класс.

Геометрические построения (7 уроков)

Четырехугольники. (19 часов)

Теорема Пифагора. (13 часов)

Декартовы координаты на плоскости. (10 часов)

Движение. (7 часов)

Векторы. (8 часов)

Повторение курса геометрии 8 класса (6часов).

9 класс.

Подобие фигур(14ч).

Решение треугольников (9ч).

Многоугольники (15 ч).

Площади фигур (17ч).

Элементы стереометрии(7ч).

Обобщающий курс планиметрии (6ч).

7 класс:

Контрольная работа №1 по теме: «Свойства геометрических фигур».

Контрольная работа №2 по теме: «Смежные и вертикальные углы»».

Контрольная работа №3по теме: «Признаки равенства треугольников».

Контрольная работа №4 по теме: «Сумма углов треугольника».

Контрольная работа №5по теме: «Геометрические построения».

8 класс:

Контрольная работа №1 по теме: «Геометрические построения».

Контрольная работа №2 по теме: «Четырехугольники».

Контрольная работа №3по теме: «Четырехугольники».

Контрольная работа №4 по теме: «Теорема Пифагора».

Контрольная работа №5по теме: «Движение».

Кроме того проводится проверочная работа по теме: «Векторы».

9 класс:

Контрольная работа №1 по теме: «Подобие фигур».

Контрольная работа №2 по теме: «Решение треугольников».

Контрольная работа №3по теме: «Многоугольники».

Контрольная работа №4 по теме: «Площади простых фигур».

Контрольная работа №5по теме: «Площади фигур».

Кроме того проводится проверочная работа по теме: «Углы, вписанные в окружность».

Описание учебно-методического и материально-технического обеспечения образовательного процесса

Оснащение процесса обучения математике обеспечивается библиотечным фондом, печатными пособиями, а также информационно-коммуникативными средствами, экранно-звуковыми приборами, техническими средствами обучения, учебно-практическим и учебно-лабораторным оборудованием.

Библиотечный фонд

Нормативные документы

1. Федеральный государственный образовательный стандарт основного общего образования.

2. Примерные программы основного общего образования. Математика. (Стандарты второго поколения). − М.: Просвещение. 2010.

3. учебно-методического комплекта:

1.Погорелов, А. В. Геометрия. 7-9 классы : учеб. для учащихся общеобразоват. учреждений / А. В. Погорелов. – М. : Просвещение, 2013.

2.Мищенко Т.М. Рабочая тетрадь по геометрии. 7,8.9 класс. К учебнику А.В. Погорелова "Геометрия. 7-9 классы". ФГОС– М. : Издательство «Экзамен», 2014.

3.Мищенко Т.М. Геометрия. 7,8,9 класс. Тематические тесты (к учебнику Погорелова). ФГОС– М. : Издательство «Экзамен», 2014.

4. Мищенко Т.М. Геометрия. Планируемые результаты. Система заданий. 7-9 класс. ФГОС– М. : Издательство «Экзамен», 2014.

5. Гусев В.А., Сборник задач по геометрии. 7 класс. К учебникам Л.С. Атанасяна, А.В. Погорелова, В.А. Гусева. ФГОС– М. : Издательство «Экзамен», 2013.

6.Гусев В.А., Медяник А.И. Дидактические материалы по геометрии для 7,8,9 класса. – М.: Просвещение, 2006

7.Рязановский А.Р., Мухин Д.Г.Геометрия. 8 класс. Контрольные измерительные материалы. ФГОС. – М.: Издательство «Экзамен», 2014.

8. Мищенко Т.М. Дидактические материалы и методические рекомендации для учителя по геометрии: 7,8,9 класс: к учебнику Погорелова «Геометрия 7-9 класс». ФГОС– М. : Издательство «Экзамен», 2014.

9.Балаян Э.Н. Геометрия 7 – 9 классы: задачи на готовых чертежах для подготовки к ГИА и ЕГЭ / Э.Н. Балаян. – Ростов-на-Дону: Издательство «Феникс», 2013.

10.Лысенко Ф.Ф. Геометрия. 7 класс. Самостоятельные работ. Тематические тесты. Тесты для промежуточной аттестации. Справочник. Рабочая тетрадь / Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов-на-Дону: Издательство «Легион», 2013

4.Научная, научно-популярная, историческая литература.

5.Справочные пособия (энциклопедии, словари, справочники по математике и т.п.).

II. Печатные пособия

1. Таблицы по геометрии для 7 − 9 классов.

2. Портреты выдающихся деятелей математики.

III. Информационные средства

1. Коллекция медиаресурсов.

2. Интернет.

3. Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики.

4. Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.

. Интернет-ресурсы для учителя.

1. Министерство образования РФ. – Режим доступа : http://www.informika.ru; http://www.ed.gov.ru; http://www.edu.ru

2. Тестирование online: 5–11 классы. – Режим доступа : http://www.kokch.kts.ru/cdo

3. Педагогическая мастерская, уроки в Интернет и многое другое. – Режим доступа : http:// teacher.fio.ru

4. Новые технологии в образовании. – Режим доступа : http://edu.secna.ru/main

5. Мегаэнциклопедия Кирилла и Мефодия. – Режим доступа : http://mega.km.ru

6. Сайты энциклопедий, например. – Режим доступа : http://www.rubricon.ru; http://www.ency-clopedia.ru

Цифровые образовательные ресурсы (ЦОР).

7 класс

1. Министерство образования РФ. – Режим доступа : http://www.informika.ru; http://www.ed.gov.ru; http://www.edu.ru

2. Тестирование online: 5–11 классы. – Режим доступа : http://www.kokch.kts.ru/cdo

3. Педагогическая мастерская, уроки в Интернет и многое другое. – Режим доступа : http:// teacher.fio.ru

4. Новые технологии в образовании. – Режим доступа : http://edu.secna.ru/main

5. Путеводитель «В мире науки» для школьников. – Режим доступа : http://www.uic.ssu. samara.ru/~nauka

6. Мегаэнциклопедия Кирилла и Мефодия. – Режим доступа : http://mega.km.ru

7. Сайты энциклопедий, например: http://www.rubricon.ru; http. – Режим доступа ://www. encyclopedia.ru

8. Единая коллекция цифровых образовательных ресурсов по математике. – Режим доступа : http://school-collection.edu.ru/collection

8 класс

1. Интернет-портал Всероссийской олимпиады школьников. – Режим доступа : http://www. rusolymp.ru

2. Всероссийские дистанционные эвристические олимпиады по математике. – Режим доступа : http://www.eidos.ru/olymp/mathem/index.htm

3. Информационно-поисковая система «Задачи». – Режим доступа : http://zadachi.mccme.ru/ easy

4.Задачи: информационно-поисковая система задач по математике. – Режим доступа : http:// zadachi.mccme.ru

5. Конкурсные задачи по математике: справочник и методы решения. – Режим доступа : http:// mschool.kubsu.ru/cdo/shabitur/kniga/tit.htm

6. Материалы (полные тексты) свободно распространяемых книг по математике. – Режим доступа : http://www.mccme.ru/free-books

7. Математика для поступающих в вузы. – Режим доступа : http://www.matematika.agava.ru

8. Выпускные и вступительные экзамены по математике: варианты, методика. – Режим доступа : http://www.mathnet.spb.ru

9. Олимпиадные задачи по математике: база данных. – Режим доступа : http://zaba.ru

10/ Московские математические олимпиады. – Режим доступа : http://www.mccme.ru/olym-piads/mmo

11. Школьные и районные математические олимпиады в Новосибирске. – Режим доступа : http://aimakarov.chat.ru/school/school.html

12. Виртуальная школа юного математика. – Режим доступа : http://math.ournet.md/indexr.htm

13. Библиотека электронных учебных пособий по математике. – Режим доступа : http:// mschool.kubsu.ru

14. Образовательный портал «Мир алгебры». – Режим доступа : http://www.algmir. org/ index.html

15. Словари БСЭ различных авторов. – Режим доступа : http://slovari.yandex.ru

16. Этюды, выполненные с использованием современной компьютерной 3D-графики, увлекательно и интересно рассказывающие о математике и ее приложениях. – Режим доступа : http:// www.etudes.ru

17. Заочная физико-математическая школа. – Режим доступа : http://ido.tsu.ru/schools/physmat/ index.php

18. ЕГЭ по математике. – Режим доступа : http://uztest.ru

9 класс

1. Интернет-портал Всероссийской олимпиады школьников. – Режим доступа : http://www. rusolymp.ru

2. Всероссийские дистанционные эвристические олимпиады по математике. – Режим доступа : http://www.eidos.ru/olymp/mathem/index.htm

3. Информационно-поисковая система «Задачи». – Режим доступа : http://zadachi.mccme. ru/easy

4. Задачи: информационно-поисковая система задач по математике. – Режим доступа : http://zadachi.mccme.ru

5. Конкурсные задачи по математике: справочник и методы решения. – Режим доступа : http://mschool.kubsu.ru/cdo/shabitur/kniga/tit.htm

6. Материалы (полные тексты) свободно распространяемых книг по математике. – Режим доступа : http://www. mccme.ru/free-books

7. Математика для поступающих в вузы. – Режим доступа : http://www.matematika.agava.ru

8. Выпускные и вступительные экзамены по математике: варианты, методика. – Режим доступа : http://www. mathnet.spb.ru

9. Олимпиадные задачи по математике: база данных. – Режим доступа : http://zaba.ru

10. Московские математические олимпиады. – Режим доступа : http://www.mccme.ru/olym-piads/mmo

11. Школьные и районные математические олимпиады в Новосибирске. – Режим доступа : http://aimakarov.chat.ru/school/school.html

12. Виртуальная школа юного математика. – Режим доступа : http://math.ournet.md/indexr.htm

13. Библиотека электронных учебных пособий по математике. – Режим доступа :http// mschool.kubsu.ru

14. Образовательный портал «Мир алгебры». – Режим доступа : http://www.algmir.org/index.html

15. Словари БСЭ различных авторов. – Режим доступа : http://slovari.yandex.ru

16. Этюды, выполненные с использованием современной компьютерной 3D-графики, увлекательно и интересно рассказывающие о математике и ее приложениях. – Режим доступа : http:// www.etudes.ru

17. Заочная физико-математическая школа. – Режим доступа : http://ido.tsu.ru/schools/physmat/ index.php

18. ЕГЭ по математике. – Режим доступа : http://uztest.ru

19. дистанционный курс «Алгебра 9». – Режим доступа : http://lyceum8.com

IV. Экранно-звуковые пособия.

Видеофильмы по истории развития математики, математических идей и методов.

Видеоуроки

V. Технические средства обучения

1. Компьютер.

2. Мультимедиапроектор.

3. Экран (на штативе или навесной).

4. Интерактивная доска.

VI. Учебно-практическая и учебно-лабораторное оборудование

1. Доска магнитная с координатной сеткой.

2. Набор цифр, букв, знаков для средней школы (магнитный).

3. Наборы «Части целого на круге», «Простые дроби».

4. Набор геометрических тел (демонстрационный и раздаточный).

5. Комплект чертёжных инструментов (классных и раздаточных): линейка, транспортир, угольник (30, 60), угольник (45, 45), циркуль.

6. Наборы для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин

Календарно-тематическое планирование

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/141716-rabochaja-programma-po-geometrii-7-9-po-ucheb

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки