- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Рабочая программа по геометрии 7-9 по учебнику А. В. Погорелова
*
Муниципальное общеобразовательное учреждение – средняя общеобразовательная школа № 3 г. Маркса Саратовской области им. Л.Г. Венедиктовой
«Рассмотрено» Руководитель ШМО _____________/_________/ Протокол № _1__ от «__»_________201_г. | «Согласовано» Заместитель директора по УВР _____________/_____________/ «__»______09______201_г. | «Утверждаю» Директор МОУ-СОШ № 3 г. Маркса _____________/Горбунова Н.В./ Приказ № ___ от «__»__________201_г. |
РАБОЧАЯ ПРОГРАММА ПЕДАГОГА
по геометрии 7-9 класс;
учителя математики высшей категории Матвеевой Елены Владимировны
2014 - 2018
г. Маркс
Пояснительная записка
Рабочая программа по геометрии – это нормативно-правовой документ, который является составной частью основной образовательной программы основного общего образования МОУ СОШ № 3 г. Маркса Саратовской области им. Л.Г. Венедиктовой и учитывает:
требования Федерального государственного образовательного стандарта нового поколения;
требования к планируемым результатам обучения выпускников;
требования к содержанию учебных программ;
принцип преемственности общеобразовательных программ;
объем часов учебной нагрузки, определенный учебным планом МОУ СОШ № 3 г.;
цели и задачи образовательной программы основного общего образования МОУ СОШ № 3 г.;
когнитивные особенности и познавательные интересы учащихся.
Рабочая программа по математике составлена на основе:
- Федерального Государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки РФ от 17.12. 2010г. №1897;
- Примерной программы по математике 5-9 классы разработанной А.А.Кузнецовым, М.В. Рыжаковым, А.М.Кондаковым – М.: Просвещение, 2011;
- Основной образовательной программы основного общего образования МОУ СОШ № 3 г. Маркса Саратовской области им. Л.Г. Венедиктовой
Данная рабочая программа ориентирована на учащихся 7-9 общеобразовательных классов муниципального общеобразовательного учреждения – средней общеобразовательной школы №3. Срок реализации 2014-2018 г. В основу программы положены деятельностно ориентированные педагогические и дидактические принципы. Программа является логическим продолжением курса математики 5-6 класса.Предмет «Геометрия» входит в образовательную область «Математика и информатика».
Курс, соответствующий этой программе, изложен в опубликованном издательством «Просвещение» учебнике геометрии А.В. Погорелов 7-9класс, М.: Просвещение, 2013 год. Этот учебник входит в Федеральный перечень учебников 2014 – 2015 учебного года, рекомендован Министерством образования и науки Российской Федерации, соответствует Федеральному государственному образовательному стандарту основного общего образования.
Изучение геометрии в 7-9 классе направлено на достижение следующих целей:
IВнаправлении личностного развития:
формирование представлений о математике, как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей;
IIВметапредметном направлении:
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
IIIВ предметном направлении:
•овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Задачи:
овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;
способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;
воспитывать культуру личности, отношение кматематики как части общечеловеческой культуры, играющей особую роль в общественном развитии.
С учетом требований Федерального государственного образовательного стандарта основного общего образования проектирование, организация и оценка результатов образования осуществляется на основе системно-деятельностного подхода, который обеспечивает:
формирование готовности учащихся к саморазвитию и непрерывному образованию;
проектирование и конструирование развивающей образовательной среды образовательной организации;
активную учебно-познавательную деятельность учащихся;
построение образовательного процесса с учетом индивидуальных, возрастных, психологических, физиологических, особенностей здоровья обучающихся.
Таким образом, системно-деятельностный подход ставит своей задачей ориентировать ученика не только на усвоение знаний, но, в первую очередь, на способы этого усвоения, на способы мышления и деятельности, на развитие познавательных сил и творческого потенциала ребенка. В связи с этим, во время учебных занятий учащихся необходимо вовлекать в различные виды деятельности (беседа, дискуссия, экскурсия, творческая работа, исследовательская (проектная) работа и другие), которые обеспечивали бы высокое качество знаний, развитие умственных и творческих способностей, познавательной, а главное самостоятельной деятельности учеников.
Межпредметные учебные умения, которыми должны овладеть ученики:
- читать со скоростью 130 слов в минуту и понимать прочитанное;
- грамотно переписывать в тетрадь 16-18 слов в минуту;
- самостоятельно выделять главное в тексте и совместно оформлять его в виде схемы, таблицы, конспекта, реферата;
- самостоятельно изменять, дополнять и составлять устный и письменный текст;
- совместно составлять и изменять алгоритмы правил для выполнения творческих заданий;
- самостоятельно выполнять задания на отдельных уроках по каждой теме;
- самостоятельно планировать, работать, анализировать и оценивать результаты деятельности на отдельных уроках по темам.
ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА
Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстракции изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет начать работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умение учащихся вычленять геометрические факты и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.
Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение не только математических предметов, но и смежных дисциплин. Цель содержания курса «Геометрия»— развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.
В курсе геометрии можно выделить следующие содержательно-методические линии: «Геометрические фигуры», «Измерение геометрических величин».
Линия «Геометрические фигуры» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей модели для описания окружающей реальности, а также способствует развитию логического мышления путем систематического изучения свойств геометрических фигур на плоскости и применении этих свойств при решении задач на доказательство и на построение с помощью циркуля и линейки.
Содержание раздела «Измерение геометрических величин» нацелено на приобретение практических навыков, необходимых в повседневной жизни, а также способствует формированию у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах.
Курс, соответствующий этой программе, изложен в опубликованном издательством «Просвещение» учебнике геометрии А.В. Погорелов 7-9класс, М.: Просвещение, 2009 год.
Изучение программного материала ставит перед учащимися следующие задачи:
осознать,что геометрические формы являются идеализированными образами реальных объектов;
научитьсяиспользовать геометрический язык для описания предметов окружающего мира;
получитьпредставленияо некоторых областях применения геометрии в быту, науке, технике, искусстве;
усвоитьсистематизированные сведения о плоских фигурах и основных геометрических отношениях;
приобрестиопытдедуктивных рассуждений: уметь доказывать основные теоремы курса, проводить доказательные рассуждения в ходе решения задач;
научитьсярешать задачина доказательство, вычисление и построение;
овладетьнабором эвристик, часто применяемых при решении планиметрических задач на вычисление и доказательство (выделение ключевой фигуры, стандартное дополнительное построение, геометрическое место точек и т. п.);
приобрестиопытприменения аналитического аппарат (алгебраические уравнения и др.) для решения геометрических задач.
Целями изучения курса геометрии является:
7 класс
систематическое изучение свойств геометрических фигур на плоскости;
формирование пространственных представлений;
развитие логического мышления и подготовки аппарата, необходимого для изучения смежных дисциплин (физика, черчение и т.д.) и курса стереометрии в старших классах.
8 класс
развивать пространственное мышление и математическую культуру;
учить ясно и точно излагать свои мысли;
формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности, доводить начатое дело до конца;
помочь приобрести опыт исследовательской работы.
9класс
усвоить признаки подобия треугольников и отработать навыки их применения;
познакомить учащихся с основными алгоритмами решения произвольных треугольников;
расширить и систематизировать сведения о многоугольниках и окружностях.
сформировать у учащихся общее представление о площади и умение вычислять площади фигур;
дать начальное представление о телах и поверхностях в пространстве, о расположении прямых и плоскостей в пространстве.
Обобщающее повторение (18 ч)
Формы работы: беседа, рассказ, лекция, диспут, экскурсия (путешествие), дидактическая игра, дифференцированные задания, взаимопроверка, практическая работа, самостоятельная работа, фронтальная, индивидуальная, групповая, парная.
Методы работы: объяснительно-иллюстративный, репродуктивный, проблемный, эвристический, исследовательско-творческий, модельный, программированный, решение проблемно-поисковых задач.
Методы контроля усвоения материала: фронтальная устная проверка, индивидуальный устный опрос, письменный контроль (контрольные и практические работы, тестирование, письменный и устный зачет, тесты).
Учебный процесс осуществляется в классно-урочной форме в виде уроков «открытия» нового знания,уроков общеметодологической направленности, уроков рефлексии и развивающего контроля.
Формы организации учебного процесса:индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные.
Формы контроля: самостоятельная работа, контрольная работа, наблюдение, работа по карточке.
Виды организации учебного процесса:самостоятельные работы, контрольные работы.
Оценка планируемых результатов
Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.
Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.
Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.
Особенности оценки предметных результатов
Оценка предметных результатовпредставляет собой оценку достижения обучающимся планируемых результатов по отдельным предметам.
Основнымобъектом оценки предметных результатов является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.
Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода предполагает выделениебазового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с учащимися.
Реальные достижения учащихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.
Для оценки предметных результатов в 7-9 классах используется 10-ти балльная шкала отметок, соотнесенная с уровнями освоения предметных знаний.
Устанавливается пять уровней достижений учащихся:
1.Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующем уровне образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (4-5 баллов).
2.Повышенныйуровень(уровень достижений выше базового) достижения планируемых результатов свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов и соответствует оценке «хорошо» (6-7 баллов);
3.Высокий уровень(уровень достижений выше базового) достижения планируемых результатов отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области, оценка «отлично» (8-10 баллов).
выделяется два уровня:
4.Пониженный уровень (уровень достижений ниже базового) достижений, оценка «неудовлетворительно» (2-3 балла);
5. Низкий уровень (уровень достижений ниже базового) достижений, оценка «плохо» (1 балл).
Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.
Индивидуальные траектории обучения учащихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих учащихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие учащиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.
Пониженный уровень достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что учащимся не освоено даже и половины планируемых результатов, которые осваивает большинство учащихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом учащийся может выполнять отдельные задания повышенного уровня. Данная группа учащихся требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.
Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Учащимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы учащихся.
Описанный выше подход применяется в ходе различных процедур оценивания: текущего, промежуточного и итогового.
Обязательными составляющими системы накопленной оценки являются материалы:
• стартовой диагностики;
• тематических и итоговых проверочных работ;
• творческих работ, включая учебные исследования и учебные проекты.
Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. Критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня.
Уровни подготовки учащихся и критерии успешности обучения
1 – очень слабо | - Присутствовал на занятии, слушал, записывал под диктовку учителя и товарищей, переписывал с доски. |
2 – слабо | - Отличает объекты от аналогов только тогда, когда ему их предъявляют в готовом виде. |
3 – посредственно | - Запомнил большую часть правил, определений, формулировок, законов, но объяснить ничего не может. В подходе к решению задач преобладает спонтанность. |
4 – удовлетворительно | Демонстрирует полное воспроизведение изученных математических правил, формулировок и формул, однако затрудняется в пояснении. Умеет решать простейшие, стандартные задачи по теме, но часто допускает вычислительные ошибки. |
5 – недостаточно хорошо | - Объясняет отдельные положения теории, иногда выполняет такие мыслительные операции, как анализ и синтез, решает только те задачи, где ему известен алгоритм. |
6 – хорошо | Отвечает на большинство вопросов по содержанию, демонстрируя осознанность теоретических знаний, проявляет способность к самостоятельным выводам. Не задумываясь решает задачи по алгоритму, очень редко допускает вычислительные ошибки. |
7 – очень хорошо | Четко и логично излагает теоретический материал, свободно владеет понятиями и терминологией, способен к обобщению, хорошо видит связь теории с практикой. При решении задач в большинстве случаев использует четко осознанные действия. Вычислительные ошибки крайне редки. |
8 – отлично | Полностью понимает суть теории, применяет ее на практике, не особенно задумываясь. Иногда допускает ошибки, которые сам находит и исправляет. При решении задач наблюдаются четко осознанные действия. |
9 – великолепно | Легко выполняет задания на творческом уровне, свободно оперирует теорией в практической деятельности, не допуская вычислительных ошибок. |
10 - прекрасно | Творчески применяет полученные знания на практике, самостоятельно формирует новые умения на базе полученных знаний. Умеет самостоятельно формировать знания из различных источников информации (учебник, компьютер, книга). |
Общая классификация ошибок.
При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
Грубыми считаются ошибки:
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
незнание наименований единиц измерения;
неумение выделить в ответе главное;
неумение применять знания, алгоритмы для решения задач;
неумение делать выводы и обобщения;
неумение пользоваться первоисточниками, учебником и справочниками;
вычислительные ошибки, если они не являются опиской;
логические ошибки.
Кнегрубым ошибкам следует отнести:
неточность формулировок, определений, понятий теории, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
нерациональные методы работы со справочной и другой литературой;
неумение решать задачи, выполнять задания в общем виде.
Недочетами являются:
нерациональные приемы вычислений и преобразований;
небрежное выполнение записей, чертежей.
Контроль предметных результатов предлагается при проведении математических диктантов, тестирования, практических работ, самостоятельных работ обучающего и контролирующего вида, контрольных работ.
МЕСТО КУРСА ГЕОМЕТРИИ В УЧЕБНОМ ПЛАНЕ
Предмет «Геометрия» входит в образовательную область «Математика и информатика».
Учебный (образовательный) план МОУ СОШ №3 на изучение геометрии в 7-9 классах основной школы отводит 2 учебных часа в неделю в течение 35 недель обучения, всего по 70 ч в год, итого 210 часов.
ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА
Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:
личностные:
формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
регулятивные универсальные учебные действия:
умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
познавательные универсальные учебные действия:
осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
коммуникативные универсальные учебные действия:
умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
слушать партнера;
формулировать, аргументировать и отстаивать свое мнение;
предметные:
Геометрические фигуры
Выпускник научится:
• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
• решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
• научиться решать задачи на построение методом геометрического места точек и методом подобия;
• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
Выпускник научится:
• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
• вычислять длину окружности, длину дуги окружности;
• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность научиться:
• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.
Координаты
Выпускник научится:
• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
• использовать координатный метод для изучения свойств прямых и окружностей.
Выпускник получит возможность:
• овладеть координатным методом решения задач на вычисления и доказательства;
• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».
Векторы
Выпускник научится:
• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
• овладеть векторным методом для решения задач на вычисления и доказательства;
• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».
В результате изучения геометрии ученик должен:
в 7 классе
понимать существо понятия математического доказательства; некоторые примеры доказательств;
понимать каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики.
пользоваться языком геометрии для описания предметов окружающего мира
распознавать изученные геометрические фигуры, различать их взаимное расположение
изображать изученные геометрические фигуры, выполнять чертежи по условию задач
вычислять значение геометрических величин: длин и углов.
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования
проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
решения простейших практических задач, связанных с нахождением геометрических величин (использую при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
в 8 классе
понимать, что геометрические формы являются идеализированными образами реальных объектов; научиться использовать геометрический язык для описания предметов окружающего мира; получить представление о некоторых областях применения геометрии в быту, науке, технике, искусстве;
распознавать на чертежах и моделях геометрическиефигуры (отрезки; углы; треугольники и их частные виды; четырехугольники и их частные виды; многоугольники; окружность; круг); изображать указанные геометрические фигуры; выполнять чертежи по условию задачи;
владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;
решать задачи на вычисление геометрических величин, (длин, углов, площадей), применяя изученные свойства фигур и формулы и проводя аргументацию в ходе решения задач;
решать задачи на доказательство;
владеть алгоритмами решения основных задач на построение.
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
решения простейших практических задач, связанных с нахождением геометрических величин (использую при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
в 9 классе
пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
в простейших случаях строить сечения и развертки пространственных тел;
проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для улов от 0° до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве.
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
описание реальных ситуаций на языке геометрии;
расчетов, включающих простейшие тригонометрических формулы;
решения геометрических задач с использованием тригонометрии;
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
СОДЕРЖАНИЕ ТЕМ КУРСА ГЕОМЕТРИИ
Прямые и углы(15ч)
Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.
Геометрическое место точек. Метод геометрических мест точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.
2.Треугольники (65ч.)
Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.
Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.
Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов.
Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот и их продолжений.
3. Четырёхугольники (20ч)
Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки.
Прямоугольник, теорема о равенстве диагоналей прямоугольника.
Ромб, теорема о свойстве диагоналей.
Квадрат.
Трапеция, средняя линия трапеции; равнобедренная трапеция.
4. Многоугольники (10ч)
Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника
5. Окружность и круг (20ч)
Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.
Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника.
Вписанные и описанные окружности правильного многоугольника.
Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника
6. Геометрические преобразования (10ч)
Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.
7. Построения с помощью циркуля и линейки (5ч)
Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на правных частей.
8. Измерение геометрических величин (25ч)
Длина отрезка. Длина ломаной. Периметр многоугольника.
Расстояние от точки до прямой. Расстояние между параллельными прямыми.
Длина окружности, число π; длина дуги окружности.
Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.
Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.
9. Координаты (10ч)
Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.
10. Векторы (10ч)
Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение векторов.
11. Элементы логики ( 5ч)
Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Резерв времени ( 15ч)
7 класс.
Основные свойства простейших геометрических фигур (13 уроков)
Смежные и вертикальные углы (9 часов)
Признаки равенства треугольников (14 часов)
Сумма углов треугольника (15 часов)
Геометрические построения (10 часов)
Повторение курса геометрии 7 класса (9 часов)
8 класс.
Геометрические построения (7 уроков)
Четырехугольники. (19 часов)
Теорема Пифагора. (13 часов)
Декартовы координаты на плоскости. (10 часов)
Движение. (7 часов)
Векторы. (8 часов)
Повторение курса геометрии 8 класса (6часов).
9 класс.
Подобие фигур(14ч).
Решение треугольников (9ч).
Многоугольники (15 ч).
Площади фигур (17ч).
Элементы стереометрии(7ч).
Обобщающий курс планиметрии (6ч).
7 класс:
Контрольная работа №1 по теме: «Свойства геометрических фигур».
Контрольная работа №2 по теме: «Смежные и вертикальные углы»».
Контрольная работа №3по теме: «Признаки равенства треугольников».
Контрольная работа №4 по теме: «Сумма углов треугольника».
Контрольная работа №5по теме: «Геометрические построения».
8 класс:
Контрольная работа №1 по теме: «Геометрические построения».
Контрольная работа №2 по теме: «Четырехугольники».
Контрольная работа №3по теме: «Четырехугольники».
Контрольная работа №4 по теме: «Теорема Пифагора».
Контрольная работа №5по теме: «Движение».
Кроме того проводится проверочная работа по теме: «Векторы».
9 класс:
Контрольная работа №1 по теме: «Подобие фигур».
Контрольная работа №2 по теме: «Решение треугольников».
Контрольная работа №3по теме: «Многоугольники».
Контрольная работа №4 по теме: «Площади простых фигур».
Контрольная работа №5по теме: «Площади фигур».
Кроме того проводится проверочная работа по теме: «Углы, вписанные в окружность».
Описание учебно-методического и материально-технического обеспечения образовательного процесса
Оснащение процесса обучения математике обеспечивается библиотечным фондом, печатными пособиями, а также информационно-коммуникативными средствами, экранно-звуковыми приборами, техническими средствами обучения, учебно-практическим и учебно-лабораторным оборудованием.
Библиотечный фонд
Нормативные документы
1. Федеральный государственный образовательный стандарт основного общего образования.
2. Примерные программы основного общего образования. Математика. (Стандарты второго поколения). − М.: Просвещение. 2010.
3. учебно-методического комплекта:
1.Погорелов, А. В. Геометрия. 7-9 классы : учеб. для учащихся общеобразоват. учреждений / А. В. Погорелов. – М. : Просвещение, 2013.
2.Мищенко Т.М. Рабочая тетрадь по геометрии. 7,8.9 класс. К учебнику А.В. Погорелова "Геометрия. 7-9 классы". ФГОС– М. : Издательство «Экзамен», 2014.
3.Мищенко Т.М. Геометрия. 7,8,9 класс. Тематические тесты (к учебнику Погорелова). ФГОС– М. : Издательство «Экзамен», 2014.
4. Мищенко Т.М. Геометрия. Планируемые результаты. Система заданий. 7-9 класс. ФГОС– М. : Издательство «Экзамен», 2014.
5. Гусев В.А., Сборник задач по геометрии. 7 класс. К учебникам Л.С. Атанасяна, А.В. Погорелова, В.А. Гусева. ФГОС– М. : Издательство «Экзамен», 2013.
6.Гусев В.А., Медяник А.И. Дидактические материалы по геометрии для 7,8,9 класса. – М.: Просвещение, 2006
7.Рязановский А.Р., Мухин Д.Г.Геометрия. 8 класс. Контрольные измерительные материалы. ФГОС. – М.: Издательство «Экзамен», 2014.
8. Мищенко Т.М. Дидактические материалы и методические рекомендации для учителя по геометрии: 7,8,9 класс: к учебнику Погорелова «Геометрия 7-9 класс». ФГОС– М. : Издательство «Экзамен», 2014.
9.Балаян Э.Н. Геометрия 7 – 9 классы: задачи на готовых чертежах для подготовки к ГИА и ЕГЭ / Э.Н. Балаян. – Ростов-на-Дону: Издательство «Феникс», 2013.
10.Лысенко Ф.Ф. Геометрия. 7 класс. Самостоятельные работ. Тематические тесты. Тесты для промежуточной аттестации. Справочник. Рабочая тетрадь / Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов-на-Дону: Издательство «Легион», 2013
4.Научная, научно-популярная, историческая литература.
5.Справочные пособия (энциклопедии, словари, справочники по математике и т.п.).
II. Печатные пособия
1. Таблицы по геометрии для 7 − 9 классов.
2. Портреты выдающихся деятелей математики.
III. Информационные средства
1. Коллекция медиаресурсов.
2. Интернет.
3. Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики.
4. Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.
. Интернет-ресурсы для учителя.
1. Министерство образования РФ. – Режим доступа : http://www.informika.ru; http://www.ed.gov.ru; http://www.edu.ru
2. Тестирование online: 5–11 классы. – Режим доступа : http://www.kokch.kts.ru/cdo
3. Педагогическая мастерская, уроки в Интернет и многое другое. – Режим доступа : http:// teacher.fio.ru
4. Новые технологии в образовании. – Режим доступа : http://edu.secna.ru/main
5. Мегаэнциклопедия Кирилла и Мефодия. – Режим доступа : http://mega.km.ru
6. Сайты энциклопедий, например. – Режим доступа : http://www.rubricon.ru; http://www.ency-clopedia.ru
Цифровые образовательные ресурсы (ЦОР).
7 класс
1. Министерство образования РФ. – Режим доступа : http://www.informika.ru; http://www.ed.gov.ru; http://www.edu.ru
2. Тестирование online: 5–11 классы. – Режим доступа : http://www.kokch.kts.ru/cdo
3. Педагогическая мастерская, уроки в Интернет и многое другое. – Режим доступа : http:// teacher.fio.ru
4. Новые технологии в образовании. – Режим доступа : http://edu.secna.ru/main
5. Путеводитель «В мире науки» для школьников. – Режим доступа : http://www.uic.ssu. samara.ru/~nauka
6. Мегаэнциклопедия Кирилла и Мефодия. – Режим доступа : http://mega.km.ru
7. Сайты энциклопедий, например: http://www.rubricon.ru; http. – Режим доступа ://www. encyclopedia.ru
8. Единая коллекция цифровых образовательных ресурсов по математике. – Режим доступа : http://school-collection.edu.ru/collection
8 класс
1. Интернет-портал Всероссийской олимпиады школьников. – Режим доступа : http://www. rusolymp.ru
2. Всероссийские дистанционные эвристические олимпиады по математике. – Режим доступа : http://www.eidos.ru/olymp/mathem/index.htm
3. Информационно-поисковая система «Задачи». – Режим доступа : http://zadachi.mccme.ru/ easy
4.Задачи: информационно-поисковая система задач по математике. – Режим доступа : http:// zadachi.mccme.ru
5. Конкурсные задачи по математике: справочник и методы решения. – Режим доступа : http:// mschool.kubsu.ru/cdo/shabitur/kniga/tit.htm
6. Материалы (полные тексты) свободно распространяемых книг по математике. – Режим доступа : http://www.mccme.ru/free-books
7. Математика для поступающих в вузы. – Режим доступа : http://www.matematika.agava.ru
8. Выпускные и вступительные экзамены по математике: варианты, методика. – Режим доступа : http://www.mathnet.spb.ru
9. Олимпиадные задачи по математике: база данных. – Режим доступа : http://zaba.ru
10/ Московские математические олимпиады. – Режим доступа : http://www.mccme.ru/olym-piads/mmo
11. Школьные и районные математические олимпиады в Новосибирске. – Режим доступа : http://aimakarov.chat.ru/school/school.html
12. Виртуальная школа юного математика. – Режим доступа : http://math.ournet.md/indexr.htm
13. Библиотека электронных учебных пособий по математике. – Режим доступа : http:// mschool.kubsu.ru
14. Образовательный портал «Мир алгебры». – Режим доступа : http://www.algmir. org/ index.html
15. Словари БСЭ различных авторов. – Режим доступа : http://slovari.yandex.ru
16. Этюды, выполненные с использованием современной компьютерной 3D-графики, увлекательно и интересно рассказывающие о математике и ее приложениях. – Режим доступа : http:// www.etudes.ru
17. Заочная физико-математическая школа. – Режим доступа : http://ido.tsu.ru/schools/physmat/ index.php
18. ЕГЭ по математике. – Режим доступа : http://uztest.ru
9 класс
1. Интернет-портал Всероссийской олимпиады школьников. – Режим доступа : http://www. rusolymp.ru
2. Всероссийские дистанционные эвристические олимпиады по математике. – Режим доступа : http://www.eidos.ru/olymp/mathem/index.htm
3. Информационно-поисковая система «Задачи». – Режим доступа : http://zadachi.mccme. ru/easy
4. Задачи: информационно-поисковая система задач по математике. – Режим доступа : http://zadachi.mccme.ru
5. Конкурсные задачи по математике: справочник и методы решения. – Режим доступа : http://mschool.kubsu.ru/cdo/shabitur/kniga/tit.htm
6. Материалы (полные тексты) свободно распространяемых книг по математике. – Режим доступа : http://www. mccme.ru/free-books
7. Математика для поступающих в вузы. – Режим доступа : http://www.matematika.agava.ru
8. Выпускные и вступительные экзамены по математике: варианты, методика. – Режим доступа : http://www. mathnet.spb.ru
9. Олимпиадные задачи по математике: база данных. – Режим доступа : http://zaba.ru
10. Московские математические олимпиады. – Режим доступа : http://www.mccme.ru/olym-piads/mmo
11. Школьные и районные математические олимпиады в Новосибирске. – Режим доступа : http://aimakarov.chat.ru/school/school.html
12. Виртуальная школа юного математика. – Режим доступа : http://math.ournet.md/indexr.htm
13. Библиотека электронных учебных пособий по математике. – Режим доступа :http// mschool.kubsu.ru
14. Образовательный портал «Мир алгебры». – Режим доступа : http://www.algmir.org/index.html
15. Словари БСЭ различных авторов. – Режим доступа : http://slovari.yandex.ru
16. Этюды, выполненные с использованием современной компьютерной 3D-графики, увлекательно и интересно рассказывающие о математике и ее приложениях. – Режим доступа : http:// www.etudes.ru
17. Заочная физико-математическая школа. – Режим доступа : http://ido.tsu.ru/schools/physmat/ index.php
18. ЕГЭ по математике. – Режим доступа : http://uztest.ru
19. дистанционный курс «Алгебра 9». – Режим доступа : http://lyceum8.com
IV. Экранно-звуковые пособия.
Видеофильмы по истории развития математики, математических идей и методов.
Видеоуроки
V. Технические средства обучения
1. Компьютер.
2. Мультимедиапроектор.
3. Экран (на штативе или навесной).
4. Интерактивная доска.
VI. Учебно-практическая и учебно-лабораторное оборудование
1. Доска магнитная с координатной сеткой.
2. Набор цифр, букв, знаков для средней школы (магнитный).
3. Наборы «Части целого на круге», «Простые дроби».
4. Набор геометрических тел (демонстрационный и раздаточный).
5. Комплект чертёжных инструментов (классных и раздаточных): линейка, транспортир, угольник (30, 60), угольник (45, 45), циркуль.
6. Наборы для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин
Календарно-тематическое планирование
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/141716-rabochaja-programma-po-geometrii-7-9-po-ucheb
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Принципы и особенности социальной работы с бездомными людьми»
- «Социальная работа с несовершеннолетними и семьями в трудной жизненной ситуации»
- «Организация учебно-воспитательного процесса в детской школе искусств (ДШИ) с учетом особых образовательных потребностей детей с ОВЗ»
- «Содержание и организация сопровождения замещающей семьи с приемными детьми»
- «Развитие математической грамотности обучающихся на уроках математики»
- «Особенности профориентационной работы с детьми дошкольного возраста»
- Методическое сопровождение реализации общеобразовательных программ. Организация деятельности учителя-методиста
- Физика и астрономия: теория и методика преподавания в образовательной организации
- Учитель-методист в образовательной организации. Содержание методического сопровождения реализации общеобразовательных программ
- Менеджмент в дополнительном образовании детей
- Образовательные технологии и методики обучения основам безопасности жизнедеятельности
- Содержание и методы работы музыкального руководителя в дошкольной образовательной организации

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.