Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
26.01.2018

Рабочая программа по математике 9 класс

Середа Татьяна Михайловна
учитель математики
Рабочая программа по математики на 5 часов

Содержимое разработки

Пояснительная записка.

Программа разработана на основе программы «Математика 5-6 классы. Алгебра 7-9 классы. Алгебра и начала математического анализа 10-11 классы»/авт.-сост. И.И.Зубарева, А.Г.Мордкович.-2-е изд., испр. и доп. –М.: Мнемозина, 2009., программы общеобразовательных учреждений «Геометрия 7-9 классы», сост. Т.А. Бурмистрова, изд. М.:Просвещение, 2009и на основе федерального компонента Государственного стан­дарта основного общего образования на базовом уровне.

Данная программа конкретизирует содержание предметных тем образовательного стандарта и дает пример­ное распределение учебных часов по разделам курса.

При изучении курса математики на базовом уровне про­должаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Гео­метрия», «Элементы комбинаторики, теории вероятностей, статистики и логики».

В рамках указанных содержательных линий решаются следующие задачи:

систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствова­ние практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппа­рата, сформированного в основной школе, и его приме­нение к решению математических и нематематических задач;

расширение и систематизация общих сведений о функ­циях, пополнение класса изучаемых функций, иллюстра­ция широты применения функций для описания и изуче­ния реальных зависимостей;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствова­ние интеллектуальных и речевых умений путем обогаще­ния математического языка, развития логического мышле­ния;

Цели:

Изучение математики в 8 классе на базовом уров­не направлено на достижение следующих целей:

формирование представлений о математике как уни­версальном языке науки, средстве моделирования явле­ний и процессов, об идеях и методах математики;

развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в выс­шей школе по соответствующей специальности, в буду­щей профессиональной деятельности;

овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественно-научных дисциплин на базовом уровне, для получения образования в областях, не тре­бующих углубленной математической подготовки;

воспитание средствами математики культуры лично­сти, отношения к математике как к части общечелове­ческой культуры через знакомство с историей развития математики, эволюцией математических идей; понима­ния значимости математики для общественного про­гресса.

Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится не менее 175 ч из расчета 5 ч в неделю. При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре и геометрии.

Примерная программа рассчитана на 175 учебных ча­сов. При этом в ней предусмотрен резерв свободного учеб­ного времени в объеме 5 учебных часов для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий.

Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образова­ния учащиеся овладевают разнообразными способами дея­тельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смеж­ных дисциплин;

выполнения и самостоятельного составления алгорит­мических предписаний и инструкций на математическом материале;

выполнения расчетов практического характера;

использования математических формул и самостоятель­ного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, ин­тегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказан­ных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, вклю­чения своих результатов в результаты работы группы, со­отнесения своего мнения с мнением других участников учебного коллектива и мнением авторитетных источни­ков.

Критерии выставления оценок по математике

При оценке устных и письменных ответов учитель должен учитывать полноту, глубину, прочность знаний и умений учащихся, использование их в различных ситуациях. Оценка зависит от наличия и характера погрешностей, допущенных учащимися. Среди погрешностей выделяются погрешности и недочеты.

Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел ЗУН программы. К недочетам относятся погрешности, которые свидетельствуют о недостаточно полном усвоении основных знаний или умений или об отсутствии знаний, не считающихся в программе основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла, полученного учеником задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.

Граница между ошибкой и недочетом считается в некоторой степени условной.

Оценка ответа учащегося при устном или письменном опросе проводится по пятибалльной системе: 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).

Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.

Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложения и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ и аккуратно записано решение.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком уровне математического развития учащегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им заданий.

Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения с учетом текущих оценок.

Оценка устных ответов учащихся

Ответ оценивается оценкой «5», если ученик:

Полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

Изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

Правильно выполнил чертежи, рисунки, графики, сопутствующие ответу;

Показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

Продемонстрировал знание ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;

Отвечал самостоятельно без наводящих вопросов учителя.

Возможны 1-2 неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается оценкой «4», если он удовлетворяет в основном требованиям на отметку «5», но при этом имеет один из недостатков:

В изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;

Допущены 1-2 недочета при освещении основного содержания ответа, исправленные по замечанию учителя;

Допущена ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленных по замечанию учителя.

Ответ оценивается оценкой «3», если:

Неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала;

Имелись затруднения или допущены ошибки в определении понятий, в использовании математической терминологии, в чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

При знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

Не раскрыто основное содержание учебного материала»

Обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

Допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках , которые не исправлены после нескольких наводящих вопросов учителя.

Оценка письменных и контрольных работ учащихся

Отметка «5» ставится, если:

Работа выполнена полностью;

В логических рассуждениях и обосновании решения нет пробелов и ошибок;

В решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала)

Отметка «4» ставится, если:

Работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

Допущена одна ошибка или 2-3 недочета в выкладках, чертежах, графиках (если эти виды работы не являлись специальным объектом проверки)

Отметка «3» ставится, если:

Допущены более одной ошибки или более 2-3 недочетов в выкладках, чертежах или графиках, на учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

Допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере

Содержание программы.

Повторение (5 ч)

Рациональные неравенства и их системы (16 ч)

Линейные и квадратные неравенства (повторение).

Рациональное неравенство. Метод интервалов.

Множества и операции над ними.

Система неравенств. Решение системы неравенств.

Векторы. Метод координат(18ч)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простей­шие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание дол­жно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Системы уравнений (15 ч)

Рациональное уравнение с двумя переменными. Решение урав­нения р(х; у) = 0.

Равносильные уравнения с двумя переменны­ми. Формула расстояния между двумя точками координатной плоскости. График уравнения- а)2 + {у - b)2 = г2. Система уравнений с двумя переменными. Решение системы уравнений. Неравенства и системы неравенств с двумя переменными.

Методы решения систем уравнений (метод подстановки, алгеб­раического сложения, введения новых переменных). Равносиль­ность систем уравнений.

Системы уравнений как математические модели реальных ситуаций.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов(11ч)

Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов иего применение в геометрических задачах.

Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помо­щью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольни­ка (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рас­сматриваются свойства скалярного произведения и его примене­ние при решении геометрических задач.

Основное внимание следует уделить выработке прочных на­выков в применении тригонометрического аппарата при реше­нии геометрических задач.

Числовые функции (25 ч)

Функция. Независимая переменная. Зависимая переменная. Область определения функции. Естественная область определе­ния функции. Область значений функции.

Способы задания функции (аналитический, графический, табличный, словесный).

Свойства функций (монотонность, ограниченность, выпук­лость, наибольшее и наименьшее значения, непрерывность). Исследование функций: у = С, у = kx+ т, у = kx2,у = ,у = ,у = ах2+ bх + с.

Четные и нечетные функции. Алгоритм исследования функ­ции на четность. Графики четной и нечетной функций.

Степенная функция с натуральным показателем, ее свойства и график. Степенная функция с отрицательным целым показате­лем, ее свойства и график.

Функцияу = ее свойства и график.

Длина окружности и площадь круга(12ч)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель — расширить знание учащихся о много­угольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления. В начале темы дается определение правильного многоуголь­ника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помо­щью описанной окружности решаются задачи о построении пра­вильного шестиугольника и правильного 2n-угольника, если дан правильный n-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружно­сти и площади круга. Вывод опирается на интуитивное представ­ление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его пери­метр стремится к длине этой окружности, а площадь — к площа­ди круга, ограниченного окружностью.

Прогрессии (16ч)

Числовая последовательность. Способы задания числовых последовательностей (аналитический, словесный, рекуррент­ный). Свойства числовых последовательностей.

Арифметическая прогрессия. Формула n-го члена. Формула суммы членов конечной арифметической прогрессии. Характери­стическое свойство.

Геометрическая прогрессия. Формула n-го члена. Формула суммы членов конечной геометрической прогрессии. Характери­стическое свойство. Прогрессии и банковские расчеты.

Движения(8ч)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. На­ложения и движения.

Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотре­нии видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основ­ных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движени­ем плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий нало­жения и движения.

Элементы комбинаторики, статистики и теории вероятно­стей (12 ч)

Комбинаторные задачи. Правило умножения. Факториал. Перестановки.

Группировка информации. Общий ряд данных. Кратность варианты измерения. Табличное представление информации. Частота варианты. Графическое представление информации. Полигон распределения данных. Гистограмма. Числовые харак­теристики данных измерения (размах, мода, среднее значение).

Вероятность. Событие (случайное, достоверное, невозможное). Классическая вероятностная схема. Противоположные события. Несовместные события. Вероятность суммы двух событий. Веро­ятность противоположного события. Статистическая устойчи­вость. Статистическая вероятность.

Об аксиомах геометрии (2ч)

Беседа об аксиомах геометрии.

Основная цель — дать более глубокое представление о си­стеме аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

Начальные сведения из стереометрии(8ч)

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: ци­линдр, конус, сфера, шар, формулы для вычисления их площа­дей поверхностей и объемов.

Основная цель — дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основ­ными формулами для вычисления площадей поверхностей и объ­емов тел.

Рассмотрение простейших многогранников (призмы, парал­лелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе нагляд­ных представлений, без привлечения аксиом стереометрии. Фор-мулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площа­дей боковых поверхностей цилиндра и конуса получаются с по­мощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

Обобщающее повторение (22 ч)

Учебно – тематический план.

№ п/п

Тема

Количество часов

1.

Повторение

5

2.

Рациональные неравенства и их системы

16

3.

Векторы. Метод координат

18

4.

Системы уравнений

15

5.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

11

6.

Числовые функции

25

7.

Длина окружности и площадь круга

12

8.

Прогрессии

16

9.

Движения

8

10

Элементы комбинаторики, статистики и теории вероятностей

12

11.

Об аксиомах геометрии

2

12.

Начальные сведения о стереометрии

8

13.

Обобщающее повторение

22

Всего:

170

В результате изучения математики ученик должен:

знать/понимать

существо понятия математического доказательства; приме­ры доказательств;

существо понятия алгоритма; примеры алгоритмов;

как используются математические формулы, уравнения и неравенства; примеры их применения для решения математиче­ских и практических задач;

как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

как потребности практики привели математическую науку к необходимости расширения понятия числа;

вероятностный характер многих закономерностей окру­жающего мира; примеры статистических закономерностей и выво­дов;

каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Арифметика

уметь

выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя зна­ками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числи­телем;

переходить от одной формы записи чисел к другой, пред­ставлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

выполнять арифметические действия с рациональными чис­лами, сравнивать рациональные и действительные числа; нахо­дить в несложных случаях значения степеней с целыми показа­телями и корней; находить значения числовых выражений;

округлять целые числа и десятичные дроби, находить при­ближения чисел с недостатком и избытком, выполнять оценку числовых выражений;

пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и про­центами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материа­лов, калькулятора, компьютера;

устной прикидки и оценки результата вычислений; провер­ки результата вычисления с использованием различных прие­мов;

интерпретации результатов решения задач с учетом огра­ничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

Алгебра

уметь

составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подста­новки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

выполнять основные действия со степенями с целыми пока­зателями, с многочленами и с алгебраическими дробями; выпол­нять разложение многочленов на множители; выполнять тожде­ственные преобразования рациональных выражений;

применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выраже­ний, содержащих квадратные корни;

решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравне­ний и несложные нелинейные системы;

решать линейные и квадратные неравенства с одной пере­менной и их системы;

решать текстовые задачи алгебраическим методом, интер­претировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

изображать числа точками на координатной прямой;

определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

распознавать арифметические и геометрические прогрес­сии; решать задачи с применением формулы общего члена и сум­мы нескольких первых членов;

находить значения функции, заданной формулой, табли­цей, графиком, по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

описывать свойства изученных функций, строить их гра­фики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахож­дения нужной формулы в справочных материалах;

моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

интерпретации графиков реальных зависимостей между величинами;

Элементы логики, комбинаторики, статистики и теории вероятностей

уметь

проводить несложные доказательства, получать простей­шие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием пра­вила умножения;

вычислять средние значения результатов измерений;

находить частоту события, используя собственные наблюде­ния и готовые статистические данные;

находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

выстраивания аргументации при доказательстве (в форме монолога и диалога);

распознавания логически некорректных рассуждений;

записи математических утверждений, доказательств;

анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

решения практических задач в повседневной и профессиональ­ной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

решения учебных и практических задач, требующих систе­матического перебора вариантов;

сравнения шансов наступления случайных событий, оцен­ки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

понимания статистических утверждений.

Геометрия

уметь:

пользоваться геометрическим языком для описания предме­тов окружающего мира;

распознавать геометрические фигуры, различать их взаимное расположение;

изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур; распознавать на чертежах, моделях и в окружающей обста­новке основные фигуры, изображать их;

проводить операции над векторами, вычислять длину и коор­динаты вектора, складывать и вычитать вектора, умножать вектор на число;

решать геометрические задачи, опираясь на изученные свой­ства фигур и отношений между ними, применяя дополни­тельные построения, алгебраический аппарат, соображения симметрии;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

решать простейшие планиметрические задачи;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

описания реальных ситуаций на языке геометрии; расчетов, включающих простейшие преобразования;

решения практических задач, связанных с нахождением гео­метрических величин (используя при необходимости справоч­ники и технические средства);

Перечень контрольных работ

Входная контрольная работа

2. Контрольная работа № 1 «Рациональ­ные неравенства и их системы»

3. Контрольная работа № 2 «Векторы. Метод координат»

4. Контрольная работа № 3 «Системы уравнений»

5. Контрольная работа № 4«Соотношения между сторонами и углами треугольника. Скалярное произведение векторов»

6. Контрольная работа № 5 «Числовые функции. Четные и нечетные функции».

7. Контрольная работа № 6 «Числовые функции. Свойства функций».

8. Контрольная работа № 7«Длина окружности и площадь круга».

9. Контрольная работа № 8 «Арифметическая и геометрическая прогрессии».

10. Контрольная работа №9 «Движения»

11. Контрольная работа № 10 «Элементы комбинаторики, статистики и теории вероятностей».

12. Итоговая контрольная работа

Учебники:

Алгебра. 9 класс. В 2 ч. Ч.1. Учебник для общеобразовательных учреждений /А.Г.Мордкович, П.В. Семенов.-10-е изд., перераб.- М.: Мнемозина, 2008.

Алгебра. 9 класс. В 2 ч. Ч.1. Задачникник для общеобразовательных учреждений /А.Г.Мордкович, Л.А. Александрова, Т.Н. Мишустина и др.; под ред. А.Г.Мордковича. -10-е изд., перераб.- М.: Мнемозина, 2008.

Контрольные и самостоятельные работы по алгебре 9 класса к учебнику А.Г.Мордковича. М, изд. «Экзамен», 2008.

Геометрия. 7-9 класс. Учебник для общеобразовательных учреждений /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев-18-е изд.,- М.«Просвещение», 2008.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/295732-rabochaja-programma-po-matematike-9-klass

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки