- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Школьный этап Олимпиады по математике
Рекомендуемое время проведения олимпиады: для 5-6 классов – 2 урока, для 7-8 классов – 3 урока, для 9-11 классов – 4 урока.
Вариант должен содержать 4-6 задач разной сложности. Желательно, чтобы задания охватывали большинство разделов школьной математики, изученных к моменту проведения олимпиады. Первые две (самые легкие) задачи варианта должны быть доступны подавляющему большинству участников. В качестве сложных задач рекомендуется включать в вариант задачи, использующие материал, изучаемый на факультативных занятиях.
Рекомендуется подготовка заданий для школьного этапа олимпиады муниципальными предметно-методическими комиссиями по математике
Порядок проведения школьного этапа олимпиады
Школьный этап Олимпиады проводится в один день в октябре для учащихся 5-11 классов.
Рекомендуемое время проведения олимпиады: для 5-6 классов – 2 урока, для 7-8 классов – 3 урока, для 9-11 классов – 4 урока.
Вариант должен содержать 4-6 задач разной сложности. Желательно, чтобы задания охватывали большинство разделов школьной математики, изученных к моменту проведения олимпиады. Первые две (самые легкие) задачи варианта должны быть доступны подавляющему большинству участников. В качестве сложных задач рекомендуется включать в вариант задачи, использующие материал, изучаемый на факультативных занятиях.
Рекомендуется подготовка заданий для школьного этапа олимпиады муниципальными предметно-методическими комиссиями по математике.
Общие критерии оценивания
Задания математических олимпиад являются творческими, допускают несколько различных вариантов решений. Кроме того, необходимо оценивать частичные продвижения в задачах (например, разбор одного из случаев методом, позволяющим решить задачу в целом, доказательство леммы, используемой в одном из доказательств, нахождение примера или доказательства оценки в задачах типа «оценка + пример» и т.п.). Наконец, возможны как существенные, так и не влияющие на логику рассуждений логические и арифметические ошибки в решениях. Окончательные баллы по задаче должны учитывать все вышеперечисленное
Нарастание сложности заданий от первого к последнему.
При этом, их трудность должна быть такой, чтобы с первым заданием могли успешно справиться примерно 70% участников, со вторым – более 50%, с третьим – около 20%, а с последними – лучшие из участников олимпиады.
Тематическое разнообразие заданий: в комплект должны входить задачи по геометрии, алгебре, комбинаторике, в младших классах – по арифметике, логические задачи; в старших классах желательно включение задач по теории чисел, тригонометрии, стереометрии, математическому анализу. При этом допустимо и даже рекомендуется включение в варианты задач, объединяющих различные разделы школьной математики.
Обязательная новизна задач для участников олимпиады. В случае, когда задания выбираются из печатных изданий или из сети Интернет, методическая комиссия соответствующего этапа должна использовать источники, не известные участникам.
Недопустимость включения в задания задач по разделам математики, не изученным по всем базовым учебникам по алгебре и геометрии в соответствующем классе к моменту проведения олимпиады.
Задания математических олимпиад являются творческими, допускают несколько различных вариантов решений. Кроме того, необходимо оценивать частичные продвижения в задачах (например, разбор одного из случаев методом, позволяющим решить задачу в целом, доказательство леммы, используемой в одном из доказательств, нахождение примера или доказательства оценки в задачах типа «оценка + пример» и т.п.). Наконец, возможны как существенные, так и не влияющие на логику рассуждений логические и арифметические ошибки в решениях. Окончательные баллы по задаче должны учитывать все вышеперечисленное
В соответствии с регламентом проведения математических олимпиад школьников каждая задача оценивается из 7 баллов.
Соответствие правильности решения и выставляемых баллов приведено в таблице.
Баллы | Правильность (ошибочность) решения |
7 | Полное верное решение. |
6-7 | Верное решение. Имеются небольшие недочеты, в целом не влияющие на решение. |
5-6 | Решение в целом верное. Однако оно содержит ряд ошибок, либо не рассмотрение отдельных случаев, но может стать правильным после небольших исправлений или дополнений. |
4 | Верно рассмотрен один из двух (более сложный) существенных случаев, или в задаче типа «оценка + пример» верно получена оценка. |
2-3 | Доказаны вспомогательные утверждения, помогающие в решении задачи. |
0-1 | Рассмотрены отдельные важные случаи при отсутствии решения (или при ошибочном решении). |
0 | Решение неверное, продвижения отсутствуют. |
0 | Решение отсутствует. |
Важно отметить, что любое правильное решение оценивается в 7 баллов. Недопустимо снимать баллы за то, что решение слишком длинное, или за то, что решение школьника отличается от приведенного в методических разработках или от других решений, известных жюри. Важно отметить, что исправления в работе (зачеркивания ранее написанного текста) не являются основанием для снятия баллов.
В то же время любой сколь угодно длинный текст решения, не содержащий полезных продвижений, должен быть оценен в 0 баллов.
Победители и призеры олимпиады определяются жюри в соответствии с итоговой таблицей. Список победителей и призеров утверждается организатором соответствующего этапа олимпиады.
5 я класс
5.1.Найдите решение числового ребуса , a,bb + b,ab=10, где aиb– различные цифры.
5.2.Составьте из восьми различных ненулевых цифр 4 двузначных числа таких, что сумма двух из них равна сумме двух других.
5.3.У Карлсона в шкафу стоят 5 банок малинового, 8 банок земляничного, 10 банок вишневого и 25 банок клубничного варенья. Может ли Карлсон съесть все варенье, если каждый день он хочет съедать 2 банки варенья, при этом обязательно из разных ягод?
5.4.Петя сказал, что у него братьев и сестер поровну, а Маша сказала, что у нее братьев в три раза больше, чем сестер. Сколько детей в семье, если Маша и Петя – брат и сестра?
5.5.В ящике 23 кг гвоздей. Как с помощью чашечных весов и одной гири в 1 кг за два взвешивания отмерить 5 кг гвоздей?
6 я класс
6.1.Расставьте скобки в выражении 7 – 6 – 5 – 4 – 3– 2 – 1 = 0 так, чтобы получилось верное равенство.
6.2.Запишите числа 1, 2, 3, 4, 6, 8, 9 в строку так, чтобы из любых двух соседних чисел одно делилось бы на другое.
6.3.Даны три сосуда: первый емкостью 3 л, второй — 5 л, третий — 20 л. Первые два сосуда пустые. Третий заполнен водой. Как с помощью нескольких переливаний налить во второй сосуд ровно 4 л воды? (При переливаниях разрешается наливать в сосуд ровно столько воды, сколько в нем помещается, либо выливать всю воду из одного сосуда в другой, если она в него вся помещается.)
6.4.У весов сдвинута стрелка, то есть они всегда показывают на фиксированное число граммов больше (или меньше) чем истинный вес. Когда на весы положили дыню, весы показали 3 кг. Когда на весы положили арбуз, весы показали 5 кг. Когда взвесили и арбуз, и дыню, весы показали 7 кг. Сколько кг покажут весы, если на них поставить гирю в 2 кг?
Ответ.3 кг.
7я класс
7.1.В пенале лежит 10 ручек. Известно, что по крайней мере одна из ручек красная. Также известно, что если из пенала взять любые две ручки, то среди них обязательно будет синяя. Сколько красных ручек может быть в пенале? Объясните свой ответ.
7.2.Найдите десять натуральных чисел, сумма и произведение которых равны 20. 5
7.3.Три ученика A,BиCучаствовали в беге на 100 м. Когда Aприбежал на финиш, Bбыл позади него на 10 м, также, когда Bфинишировал,Cбыл позади него на 10 м. На сколько метров на финише AопередилC?
7.4.Из произведения всех натуральных чисел от 99 до 3388 включительно вычеркнули все числа, делящиеся на 5. Какой цифрой будет оканчиваться произведение оставшихся чисел?
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/377282-shkolnyj-jetap-olimpiady-po-matematike
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Математическая грамотность: особенности работы по развитию функциональной грамотности у обучающихся»
- «Основные положения системного подхода в работе с замещающими семьями»
- «Реализация ФГОС образования обучающихся с умственной отсталостью: специфика организации инклюзивного процесса для лиц с ОВЗ»
- «Преподавание географии и экологии по ФГОС ООО и ФГОС СОО: содержание, методы и технологии»
- «Профилактика детского дорожно-транспортного травматизма и обучение школьников правилам дорожного движения»
- «Делопроизводство в образовательной организации»
- Педагогическое образование: педагогика и методика преподавания химии в образовательной организации
- Педагог-воспитатель группы продленного дня. Теория и методика организации учебно-воспитательной работы
- Теория и методика преподавания физики и астрономии в образовательной организации
- Реализация физического воспитания. Особенности организации адаптивной физической культуры для обучающихся с ОВЗ
- Теория и методика преподавания истории и обществознания
- Профессиональная деятельность музыкального руководителя дошкольной образовательной организации

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.