Повышение квалификации
- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
Почему стоит размещать разработки у нас?
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
в СМИ
Диплом за инновационную
профессиональную
деятельность
профессиональную
деятельность
07.11.2019
Формулы по теме «Производная»
Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.Итак, производные элементарных функций:
Название Функция Производная
Константа f(x) = C, C ∈ R 0 (да-да, ноль!)
Степень с рациональным показателем f(x) = x n n · x n − 1
Синус f(x) = sin x cos x
Косинус f(x) = cos x − sin x (минус синус)
Тангенс f(x) = tg x 1/cos2 x
Котангенс f(x) = ctg x − 1/sin2 x
Натуральный логарифм f(x) = ln x 1/x
Произвольный логарифм f(x) = log a x 1/(x · ln a)
Показательная функция f(x) = e x e x (ничего не изменилось)
Название Функция Производная
Константа f(x) = C, C ∈ R 0 (да-да, ноль!)
Степень с рациональным показателем f(x) = x n n · x n − 1
Синус f(x) = sin x cos x
Косинус f(x) = cos x − sin x (минус синус)
Тангенс f(x) = tg x 1/cos2 x
Котангенс f(x) = ctg x − 1/sin2 x
Натуральный логарифм f(x) = ln x 1/x
Произвольный логарифм f(x) = log a x 1/(x · ln a)
Показательная функция f(x) = e x e x (ничего не изменилось)
Содержимое разработки
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
Рекомендуем Вам курсы повышения квалификации и переподготовки
Курсы повышения квалификации
- «Методика преподавания основ безопасности жизнедеятельности»
- «Основы преподавания музыки в начальной школе в соответствии с ФГОС»
- «Профессиональный стандарт «Руководитель профессиональной образовательной организации»: нормативно-правовые аспекты управления в образовании»
- «Формирование УУД в рамках учебного курса ОРКСЭ»
- «Умственная отсталость и задержка психического развития (ЗПР)»
- «ОГЭ по истории: содержание экзамена и технологии подготовки обучающихся в соответствии с ФГОС»
Курсы переподготовки
- Педагогическое образование: теория и методика преподавания мировой художественной культуры
- Педагогика и методика преподавания технологии
- Методы и технологии преподавания английского языка в образовательной организации
- Теория и методика обучения астрономии в образовательной организации
- Современные технологии социального обслуживания населения
- Библиотечно-педагогическая деятельность в образовательной организации

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.