Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
11.11.2015

Рабочая программа по геометрии 7-9 классы

Воронина Нина Григорьевна
Учитель математики
Рабочая программа по геометрии 7-9 классы

Содержимое разработки

Краснодарский край

Муниципальное образованиеТуапсинский район

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 14 с. Кривенковское

УТВЕРЖДЕНО

решением педсовета протокол № 1

от 31 августа 2015 года

Председатель педсовета

___________ И.В.Григорьева

РАБОЧАЯ ПРОГРАММА

По геометрии

Ступень обучения (классы) основное общее 7-9 классы

Количество часов 204 Уровень базовый

Учитель Воронина Нина Григорьевна

Программа разработана на основе программы основного общего образования по математике (геометрии). Составитель Т.А. Бурмистрова. Издательство М. «Просвещение», 2014г., авторы: Л.С. Атанасян, В.Ф.Бутузов и др.

1.Пояснительная записка

Рабочая программа разработана на основе примерной программы основного общего образования по математике (геометрии). Составитель Т.А. Бурмистрова. Издательство М. «Просвещение», 2014г., авторы

Л.С. Атанасян,В.Ф.Бутузов и др.

Рабочая программа основного общего образования по геометрии составлены на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте общего образования. В них также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования. Овладение учащимися системой геометрических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса геометрии обусловлена тем, что его объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе. Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников. Развитие у учащихся представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует фор-мированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие

способности школьников. При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны

научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников.

Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению по-

нятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления.

ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА

В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».

Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии) способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих

свойств при решении задач вычислительного и конструктивного характера, а также практических.

Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Базисный учебный (образовательный) план на изучение

геометрии в основной школе отводит 2 учебных часа в неделю в течение каждого года обучения, всего 204 урока.

Личностные, метапредметные и предметные результаты освоения курса

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

1) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

3) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

5) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

6) креативность мышления, инициативу, находчивость, активность при решении геометрических задач;

7) умение контролировать процесс и результат учебной математической деятельности;

8) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

5) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

6) умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе

согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

8) формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

9) формирование первоначальных представлений об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

11) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

14) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

15) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, вектор, координаты) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить

классификации, логические обоснования, доказательства математических утверждений;

3) овладение навыками устных, письменных, инструментальных вычислений;

4) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических по-строений;

5) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

6) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;

7) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

СОДЕРЖАНИЕ КУРСА

Наглядная геометрия. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры развёрток многогранников, цилиндра и конуса.

Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку. Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия

треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема

косинусов и теорема синусов. Замечательные точки треугольника.

Четырёхугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции. Многоугольник. Выпуклые многоугольники. Сумма углов

выпуклого многоугольника. Правильные многоугольники. Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные

и описанные окружности правильного многоугольника. Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии. Построения с помощью циркуля и линейки. Основные за-

дачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трём сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на nравных частей. Решение задач на вычисление, доказательство и построение

с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника. Длина окружности, число π; длина дуги окружности. Градусная мера угла, соответствие между величиной цент-рального угла и длиной дуги окружности. Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур. Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты.Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы.Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Подмножество. Объединение и пересечение множеств.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример. Понятие о равносильности, следовании, употребление логических связок если ...,то ...,в том и только в том случае, логические связки и,или.

Тематическое планирование с определением основных видов учебной деятельности обучающихся

Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.

«Геометрия, 7», «Геометрия, 8», «Геометрия, 9»

Номер

пара-

графа

Содержание материала

Коли-

чество

часов

Характеристика основных видов

деятельности ученика

(на уровне учебных действий)

7 класс

Глава I. Начальные геометрические

сведения

10

Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла,

какой угол называется прямым, тупым, острым, развёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять,

какие прямые называютсяперпендикулярными; форму-

лировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах;

решать задачи, связанные с этими простейшими фигурами

1,2

Прямая и отрезок. Луч и угол

2

3

Сравнение отрезков и углов

2

4,5

Измерение отрезков. Измерение

углов

2

6

Перпендикулярные прямые

2

Решение задач 1

1

Контрольная работа № 1

1

Глава II. Треугольники

17

Объяснять, какая фигура называется треугольником, что

такое вершины, стороны, углы и периметр треугольника,

какой треугольник называется равнобедренным и какой

равносторонним, какие треугольники называются равны-

ми; изображать и распознавать на чертежах треуголь-

ники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой

треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства тре угольников

и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи

1

Первый признак равенства тре-

угольников

3

2

Медианы, биссектрисы и высоты

треугольника

3

3

Второй и третий признаки равенства треугольников

3

4

Задачи на построение

3

Решение задач

4

Контрольная работа № 2

1

Глава III. Параллельные прямые

13

Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие со-

ответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых;

объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё;

формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, свя занных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называ ется обратной по отношению к данной те-

ореме; объяснять, в чём заключается метод доказательства от противного: формулировать и доказывать теоремы

об углах с соответственно параллельными и перпендикулярными сторонами; приводить примеры исполь зования этого метода; решать задачи на вычисление, доказатель-

ство и построение, связанные с параллель ными прямыми

1

Признаки параллельности двух

прямых 3

4

2

Аксиома параллельных прямых

4

Решение задач

4

Контрольная работа № 3

1

Глава IV. Соотношения между сторонами и углами треугольника

18

Формулировать и доказывать теорему о сумме углов треугольника и её следствие о внешнем угле треугольника, проводить классификацию треугольников по углам; фор-

мулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное

утверж дения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоуголь-

ный треугольник с углом 30°, признаки равенства прямоугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между па-

раллельными прямыми; решать задачи на вычисления, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника и рас-

стоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные

построения, сопоставлять полученный результат с условием задачи, в задачах на построение исследовать возможные случаи

1

Сумма углов треугольника

3

2

Соотношения между сторонами

и углами треугольника

4

Контрольная работа № 4

1

3

Прямоугольные треугольники

4

4

Построение треугольника по

трём элементам

2

Решение задач

4

Контрольная работа № 5

1

Повторение. Решение задач

10

8 класс

Глава V. Четырёхугольники

14

Объяснять, что такое ломаная, многоугольник, его вершины, смежные стороны, диагонали, изображать и распознавать многоугольники на чертежах; показывать элементы много угольника, его внутреннюю и внешнюю области; формулировать определение выпуклого многоугольника; изобра жать и распознавать выпуклые и невыпуклые многоугольники; формулировать и до казывать утверждения о сумме углов выпуклого многоугольника и сумме его внешних углов; объяснять, какие стороны (вершины) четырёхугольника называются противоположными; формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеций, прямоугольника, ромба, квадрата; изображать и распозна вать эти

четырёхугольники; формулировать и доказывать утверж-

дения об их свойствах и признаках; решать задачи на вычисление, доказательство и построение, связанные с этими видами четырёхугольников; объяснять, какие две точки называются симметричными относительно прямой (точки), в каком случае фигура называется сим мет ричной относительно прямой (точки) и что такое ось (центр) симметрии фигуры; приводить примеры фигур, обладающих осевой(центральной) симметрией, а также примеры осевой и центральной симметрий в окружающей нас обстановке

1

Многоугольники

2

2

Параллелограмм и трапеция

6

3

Прямоугольник, ромб, квадрат

4

Решение задач 1

1

Контрольная работа № 1

1

Глава VI. Площадь

14

Объяснять, как производится измерение площадей мно-

го угольников, какие многоугольники называются равно-

великими и какие равносоставленными; формулировать

основные свойства площадей и выводить с их помощью

формулы площадей прямоугольника, параллелограмма,

треугольника, трапеции; формулировать и доказывать

тео рему об отношении площадей треугольников, имею-

щих по равному углу; формулировать и доказывать тео-

рему Пифагора и обратную ей; выводить формулу Герона для площади треугольника; решать задачи на вычисление и доказательство, связанные с формулами площадей и теоремой Пифагора

1

Площадь многоугольника

2

2

Площади параллелограмма, тре-

угольника и трапеции

6

3

Теорема Пифагора

3

Решение задач

2

Контрольная работа № 2

1

Глава VII. Подобные треугольники

19

Объяснять понятие пропорциональности отрезков; фор-

му лировать определения подобных треугольников и ко-

эффи циента подобия; формулировать и доказывать теоремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о пропорциональных отрезках в прямоугольном треугольнике; объяснять, что такое метод подобия в задачах на построение, и приводить примеры применения этого метода; объяснять, как можно использовать свойства подобных

треугольников в измерительных работах на местности объяснять, как ввести понятие подобия для произвольных фигур; формулировать определение и иллюстрировать понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника; выводить основное тригонометрическое тождество и значения синуса, косинуса и тангенса для углов 30°, 45°, 60°; решать задачи, связанные с подобием треугольников, для вычисления значений тригонометрических функций компьютерной программы.

1

Определение подобных треуголь-

ников

2

2

Признаки подобия треугольников

5

Контрольная работа № 3 1

1

3

Применение подобия к доказа-

тельству теорем и решению задач

7

4

Соотношения между сторонами

и углами прямоугольного тре-

угольника

3

Контрольная работа №4

1

Глава VIII. Окружность

17

Исследовать взаимное расположение прямой и окруж-

ности; формулировать определение касательной к окружности; формулировать и доказывать теоремы: о свойстве касательной, о признаке касательной, об отрезках касательных, проведённых из одной точки; формулировать понятия центрального угла и градусной меры дуги окружности; формулировать и доказывать теоремы: о вписанном угле, о произведении отрезков пересекающихся хорд; формулировать и доказывать теоремы, связанные с замечательными точками тре угольника: о биссектрисе угла и, как следствие, о пересечении биссектрис треугольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикуляров

к сторонам треугольника; о пересечении высот треуголь-

ника; формулировать определения окружностей, вписан-

ной в многоугольник и описанной около многоугольника;

формулировать и доказывать теоремы: об окружности,

вписанной в треугольник; об окружности, описанной око-

ло треугольника; о свойстве сторон описанного четы-

рёхугольника; о свойстве углов вписанного четырёхугольника; решать задачи на вычисление, доказательство и построение, связанные с окружностью, вписанными и описанными треугольниками и четырёхугольниками; исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ

1

Касательная к окружности

3

2

Центральные и вписанные углы

4

3

Четыре замечательные точки тре-

угольника

3

4

Вписанная и описанная окружности

4

Решение задач

2

Контрольная работа № 5

1

Повторение. Решение задач

4

9 класс

Глава IX. Векторы

8

Формулировать определения и иллюстрировать понятия

вектора, его длины, коллинеарных и равных векторов;

мотивировать введение понятий и действий, связанных

с векторами, соответствующими примерами, относящи-

мися к физическим векторным величинам; применять

векторы и действия над ними при решении геометрических задач

1

1Понятие вектора

2

2

Сложение и вычитание векторов

3

3

Умножение вектора на число.

Применение векторов к решению

задач

3

Глава X. Метод координат

10

Объяснять и иллюстрировать понятия прямоугольной системы координат, координат точки и координат вектора; выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой

1

Координаты вектора 2

2

2

Простейшие задачи в координатах

2

3

Уравнения окружности и прямой

3

Решение задач

2

Контрольная работа № 1

1

Глава XI. Соотношения между сторо-

нами и углами треугольника. Ска-

лярное произведение векторов

11

Формулировать и иллюстрировать определения синуса,

косинуса, тангенса и котангенса углов от 0 до 180°; вы-

водить основное тригонометрическое тождество и фор-

мулы приведения; формулировать и доказывать теоремы синусов и косинусов, применять их при решении треугольников; объяснять, как используются тригонометрические формулы в измерительных работах на местности; формулировать определения угла между векторами и скалярного произведения векторов; выводить формулу скалярного произведения через координаты векторов; формулировать и обосновывать утверждение о свойствах скалярного произведения; использовать скалярное произведение векторов при решении задач

1

Синус, косинус, тангенс, котангенс угла

3

2

Соотношения между сторонами

и углами треугольника

4

3

Скалярное произведение векто-

ров

2

Решение задач

1

Контрольная работа № 2

1

Глава XII. Длина окружности и пло-

щадь круга

12

Формулировать определение правильного многоуголь-

ника; формулировать и доказывать теоремы об окруж-

ностях, описанной около правильного многоугольника

и вписанной в него; выводить и использовать формулы

для вычисления площади правильного многоугольника,

его стороны и радиуса вписанной окружности; решать

задачи на построение правильных многоугольников; объяснять понятия длины окружности и площади круга;

выводить формулы для вычисления длины окружности

и длины дуги, площади круга и площади кругового сек-

тора; применять эти формулы при решении задач

1

Правильные многоугольники

4

2

Длина окружности и площадь

круга

4

Решение задач

3

Контрольная работа № 3

1

Глава XIII. Движения

8

Объяснять, что такое отображение плоскости на себя

и в каком случае оно называется движением плоскости;

объяснять, что такое осевая симметрия, центральная

симметрия, параллельный перенос и поворот; обосновывать, что эти отображения плоскости на себя являются движениями; объяснять, какова связь между движениями и наложениями; иллюстрировать основные виды движений, в том числе с помощью компьютерных программ

1

Понятие движения 3

3

2

Параллельный перенос и поворот

3

Решение задач

1

Контрольная работа № 4

1

Глава XIV. Начальные сведения из

стереометрии

8

Объяснять, что такое многогранник, его грани, рёбра,

вершины, диагонали, какой многогранник называется

выпуклым, что такое n-угольная призма, её основания,

боковые грани и боковые рёбра, какая призма называет-

ся прямой и какая наклонной, что такое высота призмы,

какая призма называется параллелепипедом и какой па-

раллелепипед называется прямоугольным; формулиро-

вать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоугольного параллелепипеда; объяснять, что такое объём многогранника; выводить (с помощью принципа Кавальери) формулу объёма прямоугольного параллелепипеда; объяснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рёбра и высота пирамиды, какая пирамида называется правильной, что такое апофема правильной пирамиды, приводить формулу объёма пирамиды; объяснять, какое тело называется цилиндром, что такое его ось, высота, основания, радиус, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выража-

ются объём и площадь боковой поверхности цилиндра;

объяснять, какое тело называется конусом, что такое его

ось, высота, основание, боковая поверхность, образую-

щие, развёртка боковой поверхности, какими формулами выражаются объём конуса и площадь боковой поверхности; объяснять, какая поверхность называется сферой и какое тело называется шаром, что такое радиус и диаметр сферы (шара), какими формулами выражаются объём шара и площадь сферы; изображать и распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар

1

Многогранники

4

2

Тела и поверхности вращения

4

Об аксиомах планиметрии

2

Повторение. Решение задач

9

-

Описание материально- технического обеспечения образовательной деятельности

Нормативные документы

1. Федеральный государственный образовательный стандарт основного общего образования.

2. Примерные программы по учебным предметам. Математика.

5—9 классы.

Учебно-методическиекомплекты

УМК Л. С. Атанасяна и др.

1. Геометрия: 7—9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. — М.: Просвещение, 2004—2011.

2. Геометрия: рабочая тетрадь: 7 кл. / Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков, И. И. Юдина. — М.: Просвещение, 2004—2011.

3. Геометрия: рабочая тетрадь: 8 кл. / Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков, И. И. Юдина. — М.: Просвещение, 2004—2011.

4. Геометрия: рабочая тетрадь: 9 кл. / Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков, И. И. Юдина. — М.: Просвещение, 2004—2011.

5.Зив Б. Г. Геометрия: дидакт. материалы: 7 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2004—2011.

6.Зив Б. Г. Геометрия: дидакт. материалы: 8 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2006—2011.

7.Зив Б. Г. Геометрия: дидакт. материалы: 9 кл. / Б. Г. Зив. — М.: Просвещение, 2004—2011.

8. Изучение геометрии в 7, 8, 9 классах: метод. рекомендации: кн. для учителя / Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др. — М.: Просвещение, 2003—2011.

СОГЛАСОВАНО СОГЛАСОВАНО

протокол заседания заместитель директора по УВР

методического объединения учителей __________ Э.А.Аведьян

от «27» августа 2015 года № 1 «28» августа 2015года

Руководитель МО _________________

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/161757-rabochaja-programma-po-geometrii-7-9-klassy

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки