- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
План урока по геометрии 9 класс
Геометрия -9
Тема: (1) ФОРМУЛЫ ДЛЯ РАДИУСОВ ВПИСАННЫХ
И ОПИСАННЫХ ОКРУЖНОСТЕЙ
Цели: ввести формулы, связывающие радиусы вписанной и описанной окружностей, формировать умение применять полученные знания при решении задач.
Ход урока
Организационный момент.
Фронтальный опрос:
1вариант 2вариант
2)
Изучение нового материала.
1.задача.
Дано: n – число сторон правильного многоугольника, an – сторона. Выразить R и r через аn и n.
Решение:
1) Рассмотрим ∆АОВ, АО = ОВ = R, ОD = r, ОD – биссектриса и медиана равнобедренного треугольника.
2.Повторение.
1) Свойство биссектрисы равнобедренного треугольника.
2) Определение синуса и тангенса острого угла прямоугольного треугольника.
3.Найти: R и r, при
n = 3 (правильный треугольник).
.
n = 4 (правильный четырехугольник);
. n = 6.
.
4.Задача . Выразить сторону правильного многоугольника через R и r.
Учащиеся самостоятельно могут получить формулы:
,
при n = 3; аn = 2Rsin 60° = а3 = 2rtg 60° = 2 r,
при n = 4; а4 = 2Rsin 45° = а4 = 2r tg 45° = 2r,
при n = 6; а6 = 2Rsin 30° = R, а6 = 2rtg 30° = .
Выведенные формулы можно проиллюстрировать рисунками.
III. Закрепление изученного материала.
Решение задач по готовым чертежам.
Правильные многоугольники
а – сторона многоугольника, R (r) – радиус описанной (вписанной) окружности, О – центр многоугольника.
Найти количество сторон многоугольника.
Ответ: n = 18.
Зная один из элементов (а, R или r), найти два других.
Решение (№ 2).
а) Дано: а.
Найти: R, r.
,.
б)Дано: R.
Найти: а, r.
в)Дано: r.
Найти: а, R.
IV. Итог урока.
–Какие правильные многоугольники уже рассматривались в курсе геометрии?
–Приведите пример такого выпуклого многоугольника, у которых все стороны равны, но он не является правильным.
–Назовите выпуклый многоугольник, у которого все внешние углы прямые.
Домашнее задание: подготовить тематическую таблицу «Правильный многоугольник»;
Геометрия -9
Тема: (2) ФОРМУЛЫ ДЛЯ РАДИУСОВ ВПИСАННЫХ
И ОПИСАННЫХ ОКРУЖНОСТЕЙ
Цели: ввести формулы, связывающие радиусы вписанной и описанной окружностей, .формировать навык применения полученных знаний при решении задач.
Ход урока
I. Организационный момент.
II. Актуализация опорных знаний
1.Индивидуальная работа.
Карточка 1.
Выведите формулы для радиусов вписанной и описанной окружности правильного n-угольника.
Карточка 2.
Найдите радиусы вписанной и описанной окружностей для правильного треугольника, четырехугольника, шестиугольника. Сделайте рисунок.
Карточка 3.
Найдите выражение для стороны аn правильного n-угольника через радиус R описанной около него окружности и радиус r вписанной окружности. Вычислите аn при n = 3, 4, 6.
2.Фронтальная работа по таблице «Правильные многоугольники».
Самостоятельная работа:
1вариант 2вариант
1)
2)
Правильные многоугольники
Выпуклый многоугольник называется правильным, если у него все углы и стороны равны. Существуют правильные многоугольники с любым числом сторон n, где n 3. Правильный n-угольник имеет одни и те же углы,
.
Вокруг всякого правильного n-угольника можно описать окружность. Центр окружности – точка пересечения биссектрис углов.
В каждый правильный многоугольник можно описать окружность. Центр окружности – точка пересечения биссектрис углов.
Вписанная и описанная окружности правильного многоугольника имеют общий центр. Он называется центром данного правильного многоугольника.
Число сторон многоугольника, n | Выражение стороны правильного | |
R | r | |
3 | ||
4 | a4 = 2 r | |
6 | a6 = R | |
n | an = 2Rsin | an = 2r tg |
C помощью таблицы можно увидеть решение задач 18, 26.
III. Решение задач.
1. Решение задач по готовым чертежам.
Найти количество сторон.
1). 180°n – 360° = 150°n. 30°n = 360°. n = 12. | |
2) α = 140°. . 180°n – 360° = 140°n. 40°n = 360°. n = 9. | |
3) α + 2α + 2α = 180°. 5α = 180°. α = 36°. . n = 10. |
4) | Дано: а | ||
R | |||
r |
2. Решение задач.
№17.
Сторона правильного вписанного треугольника.
Рассмотрим ∆АОВ – равнобедренный, ОD – высота, а значит, медиана АD = DВ, АО = R, ОD = (по условию).
АВ = R , что и требовалось доказать.
№ 19.
№20.
Дано: окр. (О, R1), R1 = 4 дм,
∆АВС – вписанный, правильный.
BCMN – квадрат.
Найти: О, В = R2.
.
– сторона квадрата.
.
IV. Итог урока.
V. Домашнее задание: №№
Геометрия -9
Тема: ( 3) ФОРМУЛЫ ДЛЯ РАДИУСОВ ВПИСАННЫХ
И ОПИСАННЫХ ОКРУЖНОСТЕЙ
Цель: закрепить знания в ходе решения задач.
Ход урока
I. Организационный момент.
II. Проверка домашнего задания.
Задача № 21.
Наибольший размер будет иметь сторона квадрата, вписанного в данную окружность, R = 2 cм.
а4 = R см.
Задача № 22.
Сечение конуса винта имеет наибольший размер, если оно представляет собой правильный треугольник, вписанный в окружность заданного радиуса R = 1 cм.
а3 = R см.
III. Решение задач № 26, 27, 28.
IV. Самостоятельная работа.
Вариант I.
1. Дана ломаная А1А2А3А4, у которой звенья А1А2 = 3 см, А2А3 = 4 см и А3А4 = 2 см. Может ли длина отрезка A1A4 быть равной 10 см?
2. Сумма углов выпуклого многоугольника в 2 раза меньше суммы внешних углов, взятых по одному при каждой вершине. Найдите число сторон этого многоугольника.
3. Расстояния от точки А до точек В и С равны 3 см и 7 см соответственно, а расстояния от точки D до точек В и С равны 11 см и 1 см соответственно. Докажите, что точки А, В, С и D лежат на одной прямой.
Вариант II.
1. Точки А1, А2, А3 и А4 – вершины равнобокой трапеции, одно из оснований которой равно 8 см, а боковая сторона – 12 см. Может ли длина второго основания быть равной 36 см?
2. Сумма углов выпуклого многоугольника равна сумме его внешних углов, взятых по одному при каждой вершине. Найдите число сторон этого многоугольника.
3. Докажите, что в выпуклом четырехугольнике биссектрисы двух углов, прилежащих к одной стороне, образуют угол, равный полусумме двух других углов четырехугольника.
V. Итог урока.
–Какие задания вызвали затруднения при решении?
Домашнее задание:
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/183864-plan-uroka-po-geometrii-9-klass
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Особенности работы педагога с обучающимися с СДВГ в условиях реализации ФГОС»
- «Методы и технологии в преподавании учебных дисциплин «Родной язык» и «Родная литература» в соответствии с ФГОС»
- «Педагог профессионального обучения, среднего профессионального образования: специфика работы в контексте реализации ФГОС СПО и профессионального стандарта»
- «Развитие математической грамотности обучающихся на уроках математики»
- «Организация внеурочной деятельности в контексте ФГОС»
- «Профориентация в образовательной организации: методы работы с обучающимися»
- Теоретические и практические аспекты оказания экскурсионных услуг
- Секретарь учебной части. Делопроизводство в образовательной организации
- Педагогика и методика начального образования
- Методика организации учебно-производственного процесса
- Педагогика и методика преподавания физической культуры
- Организация инклюзивного образовательного процесса для обучающихся с ограниченными возможностями здоровья

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.