Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
21.07.2018

Пояснительная записка алгебра 7-9 класс

Пояснительная записка алгебра 7-9 класс к учебнику С.М. Никольского и др.

Содержимое разработки

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Настоящая рабочая программа «Алгебра 7-9» разработана на основании следующих нормативных документов:

Федерального компонента Государственного Стандарта среднего (полного) общего образования по математике;

Программы общеобразовательных учреждений Алгебра 7-9 классы, составитель Бурмистрова Т.А., М.: Просвещение, 2011; базисного учебного плана; авторский программы С.М. Никольского;

Федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных.

Программа рассчитана на использование УМК:

Учебника Алгебра 7: Учеб.для 7 кл. общеобразоват. учреждений / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин – М.: Просвещение, 2014.- 285с.

Учебника Алгебра 8: Учеб.для 8кл. общеобразоват. учреждений / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин – М.: Просвещение, 2014.- 303с.

Учебника Алгебра 9: Учеб.для 9 кл. общеобразоват. учреждений / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин – М.: Просвещение, 2014.- 293с.

Дидактические материалы по алгебре.7 класс. / М.К.Потапов, А.В.Шевкин / М: Просвещение, 2014г

Дидактические материалы по алгебре. 8 класс. / М.К.Потапов, А.В.Шевкин / М: Просвещение, 2014г

Дидактические материалы по алгебре.9 класс. / М.К.Потапов, А.В.Шевкин / М: Просвещение, 2014г

Тематические тесты 7 /М.К.Потапов, А.В.Шевкин М: Просвещение, 2014г

Тематические тесты 8 /М.К.Потапов, А.В.Шевкин М: Просвещение, 2014г

Тематические тесты 9 /М.К.Потапов, А.В.Шевкин М: Просвещение, 2014г

Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

Изучение алгебры позволяет формировать умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.

Общая характеристика курса.

В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся.Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе.

Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделовматематики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.

Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Изучение математики в основной школе направлено на достижение следующих целей:

в направлении личностного развития

• развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

• формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

• воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

• формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

• развитие интереса к математическому творчеству и математических способностей;

в метапредметном направлении

• формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

• развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

• формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

в предметном направлении

• овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Решаются следующие задачи:

развивать представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению задач и нематематических задач;

получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

развить логическое мышление и речь - умение логически обосновать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представление об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Место учебного предмета в Базисном учебном (образовательном) плане

Базисный учебный (образовательный) план на изучение алгебры в основной школе отводит 7-8 класс: 3+1 (за счет вариативной части) = 4 учебных часа в неделю в течение каждого года обучения и 9 класс -3 часа в неделю, всего 382 уроков.

7 класс – 4 часа в неделю, 35 учебных недели, итого 140 ч.;

8 класс – 4 часа в неделю, 35 учебных недели, итого 140 ч.;

9 класс – 3 часа в неделю, 34 учебных недели, итого 102 ч..

Данная программа составлена на основе авторской программы без изменений.

Виды и формы промежуточной и итоговой аттестации

Промежуточная аттестация проводится в форме: тестов, контрольных, самостоятельных работ; практических; творческих работ. Учащиеся проходят переводную аттестацию в соответствии с решением педсовета, итоговую аттестацию – в виде ОГЭ.

Требования к результатам освоения содержания курса.

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;

формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

креативность мышления, инициативу, находчивость, активность при решении алгебраических задач;

умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;

умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;

понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функций и роли участников, общие способы работы;

умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;

слушать партнера;

формулировать, аргументировать и отстаивать свое мнение;

предметные:

овладение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

умение работать с математическим текстом (структурирование, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;

овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;

овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально – графические представления для описания и анализа математических задач и реальных зависимостей;

умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;

умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических зачах и задач, возникающих в смежных учебных предметах;

умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;

умение применять изученные понятия, результаты и методы прирешения задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

Планируемые результаты изучения курса алгебры в 7-9 классах

Рациональные числа

Выпускник научится:

1) понимать особенности десятичной системы счисления;

2) владеть понятиями, связанными с делимостью натуральных чисел;

3) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

4) сравнивать и упорядочивать рациональные числа;

5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

7) познакомиться с позиционными системами счисления с основаниями, отличными от 10;

8) углубить и развить представления о натуральных числах и свойствах делимости;

9) научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

1) использовать начальные представления о множестве действительных чисел;

2) владеть понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

3) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

4) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

1) использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

2) понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

3) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

1) владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

2) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

3) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

4) выполнять разложение многочленов на множители.

Выпускник получит возможность:

5) научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

6) применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения

Выпускник научится:

1) решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

2) понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

3) применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

4) овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

5) применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

1) понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

2) решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

3) применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

4) разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

5) применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

1) понимать и использовать функциональные понятия и язык (термины, символические обозначения);

2) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

4) проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

5) использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

1) понимать и использовать язык последовательностей (термины, символические обозначения);

2) применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

3) решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;

4) понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получитвозможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Тематическое планирование

7 класс

Тема глав

Кол-во часов

Содержание

Контрольные работы

ГлаваI.Действительные числа

23

Натуральные числа и действия с ними. Делимость натуральных чисел. Обыкновенные дроби и десятичные дроби. Периодичность десятичного разложения обыкновенной дроби. Бесконечные периодические и непериодические десятичных дроби. Действительные числа, их сравнение, основные свойства. Приближения числа. Длина отрезка. Координатная ось.

1

§ 1. Натуральные числа

4

§ 2. Рациональные числа

6

§ 3. Действительные числа

10

Дополнение к главе I

3

ГлаваII. Алгебраические выражения

77

3

§ 4. Одночлены

8

Числовые и буквенные выражения. Одночлен, произведение одночленов, подобные одночлены. Многочлен, сумма и разность многочленов, произведение одночлена на многочлен, произведе­ние многочленов. Целое выражение и его числовое значение. Тождественное равенство целых выражений

1

§ 5. Многочлены

18

§6.Формулы сокращенного умножения

23

Квадрат суммы и разности. Выделение полного квадрата. Раз­ность квадратов. Сумма и разность кубов. Применение формул сокращенного умножения. Разложение мно­гочлена на множители.

1

§ 7. Алгебраические дроби

18

Алгебраические дроби и их свойства. Арифметические дейст­вия над алгебраическими дробями. Рациональное выражение и его числовое значение. Тождественное равенство рациональных выражений.

1

§ 8. Степень с целым показателем

8

Степень с целым показателем и ее свойства. Стандартный вид числа. Преобразование рациональных выражений, записанных с помощью степени с целым показателем.

Дополнение к главе II

2

ГлаваIII. Линейные уравнения

26

1

§9. Линейные уравнения с одним неизвестным

7

Уравнения первой степени с одним неизвестным. Линейные

уравнения с одним неизвестным. Решение линейных уравнений с одним неизвестным. Решение задач с помощью линейных уравнений.

§ 10. Системы линейных уравнений

17

Уравнения первой степени с двумя неизвестными. Системы двух уравнений первой степени с двумя неизвестными и способов их решения. Равносильность уравнений и систем уравнений, Решение систем двух линейных уравнений с двумя неизвестными. Решение задач при помощи систем уравнений пер­вой степени.

Дополнение к главе III

2

Повторение

10

1

Резерв

4

8 класс

Тема глав

Кол-во часов

Содержание

Контрольные работы

ГлаваI. Простейшие функции. Квадратные корни

31

2

§ 1. Функции и графики

9

Числовые неравенства. Множества чисел. Функция, график функции. Функции у=х, у =х2, у=1/х и их свойства и графики

1

§ 2. Функции у = х, у = х2, у = 1/х

9

§ 3. Квадратные корни

11

Квадратный корень. Арифметический квадратный корень. Приближенное вычисление квадратных корней. Свойства арифметических квадратных корней. Преобразование выражений, содержащих квадратные корни

1

Дополнение к главе I

2

ГлаваII. Квадратные и рациональные уравнения

36

2

§ 4. Квадратные уравнения

16

Квадратный трехчлен. Квадратное уравнение. Теорема Виета. Применение квадратных уравнений к решению задач.

1

§ 5. Рациональные уравнения

16

Рациональное уравнение. Биквадратное уравнение. Распадающееся уравнение. Уравнение, одна часть которого – алгебраическая дробь, а другая равна нулю. Решение задач при помощи рациональных уравнений.

1

Дополнение к главе II

4

ГлаваIII. Линейная, квадратичная и дробно – линейная функции

32

1

§ 6. Линейная функция

11

Прямая пропорциональная зависимость, график функции у=кх. Линейная функция и ее график. Равномерное движение.

§ 7. Квадратичная функция

10

Квадратичная функция и ее график.

§ 8. Дробно – линейная функция

7

Обратная пропорциональность. График дробно-линейной функции.

1

Дополнение к главе III

4

ГлаваIV. Системы рациональных уравнений

25

§ 9. Системы рациональных уравнений

9

Системы рациональных уравнений. Системы уравнений первой и второй степени. Решение задач при помощи систем уравнений первой и второй степени, систем рациональных уравнений.

§ 10. Графический способ решения систем уравнений

13

Графический способ решения систем двух уравнений с двумя неизвестными и исследования системы двух уравнений первой степени с двумя неизвестными. Решение систем уравнений и уравнений графическим способом.

Дополнения к главе IV

3

Повторение

12

Резерв

4

9 класс

Тема глав

Кол-во часов

Содержание

Контрольные работы

ГлаваI. Неравенства

31

2

§ 1. Линейные неравенства с одним неизвестным

9

Неравенства первой степени с одним неизвестным. Линейные неравенства с одним неизвестным. Системы линейных неравенств с одним неизвестным.

§ 2. Неравенства второй степени с одним неизвестным

11

Неравенства второй степени с одним неизвестным. Неравенства, сводящиеся к неравенствам второй степени.

1

§ 3. Рациональные неравенства

11

 Метод интервалов. Решение рациональных неравенств. Системы рациональных неравенств. Нестрогие рациональные неравенства.

1

ГлаваII. Степень числа

15

Свойства функции у = хп и ее график. Корень п-й степени. Корни четной и нечетной степени. Арифметический корень. Свойства корней п-й степени. Корень п-й степени из натурального числа.

1

§ 4. Функция у = хп

3

§ 5. Корень степени п

12

ГлаваIII. последовательности

18

Числовая последовательность. Свойства числовых последовательностей. Арифметическая и геометрическая прогрессии. Формулы суммы п первых членов арифметической и геометрической прогрессий. Бесконечно убывающая геометрическая прогрессия

2

§ 6. Числовые последовательности и их свойства

4

§ 7. Арифметическая прогрессия

7

1

§ 8. Геометрическая прогрессия

7

1

ГлаваV. Элементы приближенных вычислений, статистики, комбинаторики и теории вероятностей

19

Абсолютная и относительная погрешности приближения. [Приближения суммы и разности, произведения и частного двух чисел, суммы нескольких слагаемых. Приближенные вычисления с калькулятором.

1

§ 11. Приближения чисел

4

§ 12. Приближения чисел

2

§ 13. Комбинаторика

5

§ 14. Введение в теорию вероятностей

8

Повторение курса 7-9 классов

19

1

Содержание учебного курса.

Арифметика

Рациональные числа. Расширение множества натуральных чисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение m/n, где т — целое число, n — натуральное. Степень с целым показателем.

Действительные числа. Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени десяти в записи числа. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.

Алгебра

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и её свойства. Одночлены и многочлены.Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвёртой степеней. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства.Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

Функции

Основные понятия. Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций y= √у, y= √х, у =| x|.

Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n-х членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный экспоненциальный рост. Сложные проценты.

Вероятность и статистика

Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события.Статистический подход к понятию вероятности. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

Логика и множества

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Понятие о равносильности, следовании, употребление логических связок если ..., то ..., в том и только в том случае, логические связки и, или.

Математика в историческом развитии

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырёх. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости. Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

Направление проектной деятельности

Одним из путей формирование УУД в основной школе является включение обучающихся в учебно- исследовательскую и проектную деятельность, которая может осуществляться в рамках реализации программы учебно- исследовательской и проектной деятельности. Программа ориентирована на использование в рамкахурочной и внеурочной деятельности для всех видов образовательных организаций при получении основного общего образования.

Специфика проектной деятельности обучающихся в значительной степени связана с ориентацией на получение проектного результата, обеспечивающего решение прикладной задачи и имеющего конкретное выражение. Проектная деятельность обучающегося рассматривается с нескольких сторон: продукт как материализованный результат, процесс как работа по выполнению проекта, защита проекта как иллюстрация образовательного достижения обучающегося и ориентирована на формирование и развитие метапредметных и личностных результатов обучающихся.

Темы проектов, предлагаемых в 7 классе:

Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме, Открытие десятичных дробей.

Старинные системы мер. Десятичные дроби и метрическая система мер.

Выдающиеся математики и их вклад в развитие науки. (Л. Магницкий, Л. Эйлер.)

Темы проектов, предлагаемых в 8 классе:

Школа Пифагора.

Зарождение алгебры в недрах арифметики. Ал-Хорезми.

Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт.

Темы проектов, предлагаемых в 9 классе:

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игрыП. Ферма и Б. Паскаль. Я, Бернулли. А.Н. Колмогоров.

Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.

Виды учебной деятельности, обеспечивающие формирование ИКТ-компетенций

Среди видов учебной деятельности, обеспечивающих формирование ИКТ-компетенции обучающихся, можно выделить в том числе такие, как:

выполняемые на уроках, дома и в рамках внеурочной деятельности задания, предполагающие использование электронных образовательных ресурсов;

создание и редактирование текстов;

создание и редактирование электронных таблиц;

использование средств для построения диаграмм, графиков, блок-схем, других графических объектов;

создание и редактирование презентаций;

создание и редактирование графики и фото;

создание и редактирование видео;

создание музыкальных и звуковых объектов;

поиск и анализ информации в Интернете;

моделирование, проектирование и управление;

математическая обработка и визуализация данных;

создание веб-страниц и сайтов;

сетевая коммуникация между учениками и (или) учителем.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/318359-pojasnitelnaja-zapiska-algebra-7-9-klass

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки
Курсы повышения квалификации