- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Рабочая программа по Геометрии в 9 классе
• Федерального государственного образовательного стандарта основного общего образования (утвержден приказом Министерства образования и науки РФ №1897 от 17.12.2010 г.) (с изменениями и дополнениями);
• примерной основной образовательной программы основного общего образования (одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 8 апреля 2015 г. № 1/15);
• Геометрия. Рабочая программа к учебнику Л.С. Атанасяна и других. 7-9 классы.: учебное пособие для общеобразоват. организаций/ В.Ф. Бутузов. М. «Просвещение», 2017
Планируемые результаты освоения предмета «Геометрия» 9 класса
Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:
личностные:
•формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
•формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
•формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
•умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
•критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
•креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
•умение контролировать процесс и результат учебной математической деятельности;
•способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные: регулятивные универсальные учебные действия:
•умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
•умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
•умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
•понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
•умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
•умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
познавательные универсальные учебные действия:
•осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
•умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
•умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
•формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
•формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
•умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
•умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
•умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
•умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
•умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
коммуникативные универсальные учебные действия:
•умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
•умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
•слушать партнера;
•формулировать, аргументировать и отстаивать свое мнение;
предметные:
Предметным результатом изучения курса является сформированность следующих умений:
• пользоваться геометрическим языком для описания предметов окружающего мира;
• распознавать геометрические фигуры, различать их взаимное расположение;
• изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;
• распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
• в простейших случаях строить сечения и развертки пространственных тел;
• проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
• вычислять значения геометрических величин(длин, углов, площадей, объемов); в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и вычислять площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
• решать геометрические задачи, опираясь на изученные свойства фигур и отношений
между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, правила симметрии;
• проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
• решать простейшие планиметрические задачи в пространстве.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
• описания реальных ситуаций на языке геометрии;
• расчетов, включающих простейшие тригонометрические формулы;
• решения геометрических задач с использованием тригонометрии;
• решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
• построений с помощью геометрических инструментов (линейка, угольник, циркуль,
транспортир).
В результате изучения геометрии обучающийсянаучится:
Наглядная геометрия
1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
2) распознавать развёртки куба, прямоугольного параллелепипеда;
3) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
4) вычислять объём прямоугольного параллелепипеда.
Обучающийсяполучит возможность:
5)вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
6)углубить и развить представления о пространственных геометрических фигурах;
7)применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
Обучающийся научится:
1) пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
2) распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
3) находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
4) оперировать с начальными понятиями тригонометрии
и выполнять элементарные операции над функциями углов;
5) решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
6) решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
7) решать простейшие планиметрические задачи в пространстве.
Обучающийся получит возможность:
8)овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
9)приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
10)овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
11)научиться решать задачи на построение методом геометрического места точек и методом подобия;
12)приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ.
Измерение геометрических величин
Обучающийсянаучится:
1) использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
2) вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
3) вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
4) вычислять длину окружности, длину дуги окружности;
5) решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
6) решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Обучающийсяполучит возможность:
7)вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
8)вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
9)приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.
Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)
Геометрические фигуры
Оперировать на базовом уровне понятиями геометрических фигур;
извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;
применять для решения задач геометрические факты, если условия их применения заданы в явной форме;
решать задачи на нахождение геометрических величин по образцам или алгоритмам.
В повседневной жизни и при изучении других предметов:
использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания
Отношения
Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.
В повседневной жизни и при изучении других предметов:
использовать отношения для решения простейших задач, возникающих в реальной жизни
Измерения и вычисления
Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
применять формулы периметра, площади и объёма, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;
применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.
В повседневной жизни и при изучении других предметов:
вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни
Геометрические построения
Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.
В повседневной жизни и при изучении других предметов:
выполнять простейшие построения на местности, необходимые в реальной жизни
Геометрические преобразования
Строить фигуру, симметричную данной фигуре относительно оси и точки.
В повседневной жизни и при изучении других предметов:
распознавать движение объектов в окружающем мире;
распознавать симметричные фигуры в окружающем мире
Векторы и координаты на плоскости
Оперировать на базовом уровне понятиями вектор, сумма векторов,произведение вектора на число,координаты на плоскости;
определять приближённо координаты точки по её изображению на координатной плоскости.
В повседневной жизни и при изучении других предметов:
использовать векторы для решения простейших задач на определение скорости относительного движения
Выпускник получит возможность научиться в 9 классах для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях
Геометрические фигуры
Оперировать понятиями геометрических фигур;
извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;
формулировать в простейших случаях свойства и признаки фигур;
доказывать геометрические утверждения
владеть стандартной классификацией плоских фигур (треугольников и четырёхугольников).
В повседневной жизни и при изучении других предметов:
использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин
Отношения
Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;
характеризовать взаимное расположение прямой и окружности, двух окружностей.
В повседневной жизни и при изучении других предметов:
использовать отношения для решения задач, возникающих в реальной жизни
Измерения и вычисления
Оперировать представлениями о длине, площади, объёме как величинами. Применять теорему Пифагора, формулы площади, объёма при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объёма, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;
проводить простые вычисления на объёмных телах;
формулировать задачи на вычисление длин, площадей и объёмов и решать их. В содержании есть ещё и теорема синусов и косинусов. Либо там убрать . либо здесь добавить
В повседневной жизни и при изучении других предметов:
проводить вычисления на местности;
применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности
Геометрические построения
Изображать геометрические фигуры по текстовому и символьному описанию;
свободно оперировать чертёжными инструментами в несложных случаях,
выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;
изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.
В повседневной жизни и при изучении других предметов:
выполнять простейшие построения на местности, необходимые в реальной жизни;
оценивать размеры реальных объектов окружающего мира
Преобразования
Оперировать понятием движения и преобразования подобия, владеть приёмами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;
строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;
применять свойства движений для проведения простейших обоснований свойств фигур.
В повседневной жизни и при изучении других предметов:
применять свойства движений и применять подобие для построений и вычислений
Векторы и координаты на плоскости
Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;
выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;
применять векторы и координаты для решения геометрических задач на вычисление длин, углов.
В повседневной жизни и при изучении других предметов:
использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам
2.Содержание предмета геометрии
Содержание программы соответствует обязательному минимуму содержания образования и имеет большую практическую направленность.
Повторение 2 часа
Векторы 8 часов
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами(складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данноговектора на данное число).
Метод координат – 10 часов
На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат серединыотрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретныхгеометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.
Соотношения между сторонами и углами треугольника. 11 часов
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах. Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.
Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.
Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и егоприменение при решении геометрических задач.
Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.
Длина окружности и площадь круга - 12 часов
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятиядлины окружности и площади круга и формулы для их вычисления В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях,описанной около правильного многоугольника и вписанной в него. С помощью описаннойокружности решаются задачи о построении правильного шестиугольника и правильного 2ге-угольника, если дан правильный п-угольник.
Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника,вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.
Движения - 8 часов
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии.Параллельный перенос. Поворот. Наложения и движения.
Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющеерасстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерахпоказывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается,что понятия наложения и движения являются эквивалентными: любое наложение являетсядвижением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.
Начальные сведения из стереометрии - 8 часов
Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объѐмов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объѐмов.
Об аксиомах планиметрии. 2 часа. Беседа об аксиомах геометрии
Повторение. Решение задач. 7 часов
3. Тематическое планирование
№п/п | Название раздела | Количество часов | Контрольные работы |
Вводное повторение | 2 | ||
Векторы | 8 | ||
Метод координат | 10 | 1 | |
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. | 11 | 1 | |
Длина окружности. Площадь круга. | 12 | 1 | |
Движения | 8 | 1 | |
Начальные сведения из стереометрии | 8 | ||
Об аксиомах планиметрии | 2 | ||
Повторение | 7 | 1 | |
Итого | 68 | 5 |
Контрольные работы за курс геометрии 9класса
К/р №1. Векторы. Метод координат. | |
К/р №2. Соотношения между сторонами и углами треугольника | |
К/р. №3. Длина окружности. Площадь круга. | |
К/р. №4. Движения | |
К/р. №5. Итоговая контрольная работа |
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/410789-rabochaja-programma-po-geometrii-v-9-klasse
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Олигофренопедагогика: основы науки и методы исследования»
- «Буллинг в образовательных организациях: профилактика и устранение в соответствии с современными требованиями»
- «Противодействие коррупции в образовательной организации»
- «Разработка основной профессиональной образовательной программы СПО»
- «Наставничество в образовательной организации»
- «Проектирование учебного процесса в соответствии с ФГОС НОО»
- Социально-педагогическая деятельность в образовательной организации
- Реализация физического воспитания. Особенности организации адаптивной физической культуры для обучающихся с ОВЗ
- Менеджмент в сфере образования. Организация работы специальной (коррекционной) школы
- Тьюторское сопровождение в образовательной организации
- Современные технологии социального обслуживания населения
- Русский язык и литература: теория и методика преподавания в образовательной организации

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.